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A B S T R A C T

A goal of developmental cognitive neuroscience is to uncover brain mechanisms underlying successful learning.
While longitudinal studies capture brain changes following ‘schooling as usual’, short-term training studies can
more directly link learning to brain changes. We investigated whether eight weeks of cognitive training re-
capitulates longitudinal changes in hippocampal engagement and connectivity. Nineteen children underwent a
training program focused on improving arithmetic skills, along with fifteen children in a no-contact control
group. Before and after training, or no-contact, both groups performed an arithmetic task during neuroimaging
and a strategy assessment. Training increased activity in the anterior hippocampus, and gains in memory-based
strategies were associated with decreased lateral fronto-parietal activity and increased hippocampus-parietal
connectivity. No changes were observed in the no-contact control group. Our results demonstrate that short-term
training can recapitulate long-term neurodevelopmental changes accompanying learning and identifies plasticity
of hippocampal responses as a common locus of cognitive skill development in children.

1. Introduction

A fundamental goal of developmental cognitive neuroscience is to
determine brain mechanisms underlying successful learning. However,
disentangling the effects of experience and maturation on brain de-
velopment is especially difficult when investigating the neural basis of
academic skill learning. While longitudinal designs provide insights
into brain plasticity mechanisms that accompany increasing mastery of
academic skills, they cannot determine if the observed neural changes
are directly related to educational experiences or whether they reflect
ongoing brain maturation. Tightly constrained, well-controlled, short-
term training studies are necessary for complementing longitudinal
studies and assessing learning in a more precise manner.

Here we focus on the development of math skills, and in particular
on math fact learning, a foundational capacity for higher mathematics
and a hallmark of cognitive development [1]. Behaviorally, math fact
learning is characterized by shifts in cognitive strategies from laborious
counting to retrieval from memory [2–4]. Recent research has identi-
fied a developmentally-specific role of the medial temporal lobe in this

gradual transition between cognitive strategies. Specifically, conver-
ging evidence from multiple experimental paradigms point to the im-
portance of the medial temporal lobe, and particularly the hippo-
campus, during the development of math facts retrieval in elementary
school children [5–8,16]. Yet none of these studies have explicitly
manipulated learning experiences to test the functional relevance of
this brain structure in the development of successful math fact retrieval.
Here, we investigate whether eight weeks of an intense arithmetic
training, focused on promoting efficient strategies and speeded practice
for arithmetic problem solving [9,10] is accompanied by brain plasti-
city in hippocampal activity and connectivity.

The first studies to examine the neural correlates of arithmetic fact
retrieval capitalized on differing retrieval rates between arithmetic
operations [11–13]. In elementary school children, addition, relative to
subtraction, is more often solved by retrieval [14,15] and two neuroi-
maging studies have found greater hippocampal activity during addi-
tion compared to subtraction problem solving in this age range [8,16].
This pattern of results stands in stark contrast with studies in adults,
where retrieval rates also differ between operations [17], but
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hippocampal activity does not [11,12,18]. Instead, a more robust
finding in adults is a relative increase in engagement of the angular
gyrus (AG), in the posterior inferior parietal lobe, during arithmetic fact
retrieval [11,19–21]. Finally, one study comparing multiplication and
subtraction operations in 4th grade children found no differences in
either the hippocampus or AG and instead found weak differences in
only the primary visual cortex [22].

Because most prior studies have not explicitly examined the pro-
portion of retrieval use, comparisons between arithmetic operations
are, at best, an indirect proxy for retrieval-related activity. A more di-
rect approach is to assess strategy use in individual participants within
a particular operation, so as not to confound retrieval use and task
difficulty. In a strategy assessment, participants are first asked to solve
an arithmetic problem, and then are probed on how they computed the
answer. This approach has been very successful in studying strategy use
– both in adults [17,23] as well as in children [14,15] – and crucially,
has been demonstrated to have strong external validity: children who
report using retrieval more often than counting strategies also show
faster reaction times than children who report relying primarily on
counting [24]. Using this approach, Cho and colleagues [6] divided a
sample of 7–9 year old children into Retrievers and Counters and, using
a multivariate classifier, showed that differences in hippocampal ac-
tivity patterns could significantly discriminate these groups with an
86% accuracy. Furthermore, a follow-up study revealed that activity
levels in the hippocampus were related to individual differences in
retrieval use, with higher retrieval use associated with greater hippo-
campal engagement [5].

To more precisely map the neurodevelopmental trajectory of ar-
ithmetic problem solving, Qin and colleagues used longitudinal func-
tional magnetic resonance imaging (fMRI) data to assess the neural
correlates of developmental shifts in strategy use during arithmetic
problem solving [7]. Specifically, children were assessed twice: initially
between 7 and 9 years and then again 1.2 years later. At each of the two
time-points, participants underwent a strategy assessment and func-
tional imaging session. Use of retrieval during single-digit addition
problem solving increased significantly over the 1.2-year interval, and
crucially, was accompanied by increases in hippocampal activity. In
contrast, activity in the lateral prefrontal cortex and in the left AG
decreased with age. None of these activity changes were, however,
correlated with individual differences in changes in retrieval use. In-
stead, it was increased hippocampal connectivity with prefrontal and
parietal cortices that correlated positively with changes in retrieval use.
Additional analysis using cross-sectional data revealed that retrieval
rates continued to increase in adolescents and adults, but hippocampal
activity returned to the same level as children at the first time point.
Together these results suggest a developmentally-specific role for the
hippocampus in the acquisition of math facts. However, it is not known
whether such changes in hippocampal recruitment are the result of
maturational changes in this structure during this time period, or
whether they reflect experience-dependent effects of formal schooling
and instruction.

The main goal of this study was to investigate brain changes that
accompany intensive short-term math training in typically developing
children. We focused on plasticity of hippocampal response and con-
nectivity building on our previous longitudinal study [7]. An important
gap in the literature we address here is that majority of previous re-
trieval training studies in adults have not found increased hippocampal
recruitment and connectivity [19,25,26], (but see Bloechle [27] for an
exception). Thus, we investigated whether arithmetic fact learning in
children is dependent on hippocampal mechanisms.

We assessed the effects of an 8-week training program designed to
improve math skills in nineteen early elementary school-aged children
[9,10]. The one-on-one training used a variety of training activities
aimed at building conceptual understanding of arithmetic principles
and refining strategy use with a particular emphasis on math fact re-
trieval. In a previous study using the same experimental design, we

showed that eight weeks of individual cognitive training not only re-
mediates poor performance in children with math learning disabilities,
but also induces widespread changes in brain activity. Neuroplasticity
in children with math learning disabilities manifests as normalization of
aberrant functional responses in a distributed network of parietal,
prefrontal and ventral temporal-occipital areas that support successful
numerical problem solving, and is correlated with performance gains
[28]. The present study focuses on a larger group of typically devel-
oping children who either participated in the training study or served as
a control group. Children in the Training group completed an fMRI
scanning session in which they verified single-digit addition problems
before and after eight weeks of training. During these sessions, we also
collected an outside-the-scanner strategy assessment designed to assess
changes in strategy use [24]. A no-contact Control group of 15 children
completed the fMRI sessions and strategy assessments, but did not take
part in the training (Fig. 1A).

We hypothesized that short-term training would alter hippocampal
functional responses and connectivity in typically developing children.
Furthermore, if behavioral and brain changes observed over develop-
ment [7] were driven by learning and did not merely reflect brain
maturation, we would expect to see similar patterns of changes in short-
term training and long-term development. Specifically, we predicted
that training would result in (1) behavioral improvements character-
ized by gains in accuracy, decreases in response times and increases in
retrieval strategy-use, (2) increases in hippocampal activity levels, (3)
concurrent decreases in prefrontal and parietal activity and (4) in-
creased connectivity of the hippocampus to prefrontal and parietal
cortical regions associated with greater use of retrieval strategy use.

2. Methods

2.1. Participants

Participants were 8–9 years of age children in 3rd grade, and were
recruited from a wide range of schools in the San Francisco Bay Area
using mailings to schools and postings at libraries and community
groups. All participants were right-handed and had no history of psy-
chiatric or neurological illness. The initial sample included 46 partici-
pants who completed the 8-week math training and the Pre- and Post-
training MRI scans. As in our previous studies [7,28,29], all participants
had full-scale IQs [30] above 80. Additionally, in contrast to Iuculano
et al. [28], we only included children without specific learning dis-
ability for math as defined by scores at or above 90 (> 25th percentile)
on the Numerical Operation subtest on the Wechsler Individual
Achievement Test – Second Edition [WIAT-II, 31], a standardized test of
math achievement (see below). Given these criteria, of the total sample
of recruited children, one participant was excluded for low IQ and 22
for poor math achievement (WIAT-II scores< 90). Two further parti-
cipants were excluded for head movement resulting in poor brain image
quality (see below). The final sample of the Training group consisted of
19 children (mean age = 8.5, 11 females). All 19 participants main-
tained compliance and completed the full 8-week training. The initial
sample for the no-contact Control group included 28 participants with
functional imaging data collected eight weeks apart. Three participants
were excluded due to low performance on the Numerical Operations
subtest (< 90), 8 were excluded due to poor image quality, and 2 for
missing behavioral or imaging data at their Post-training visit, resulting
in a final sample of 15 participants (mean age = 8.8, 10 females, see
Table 1). Informed consent was obtained from the legal guardian of the
child, and study protocols were approved by the Stanford University
Institutional Review Board.

2.2. Study overview

Participants in the Training group completed four phases of the
study: (i) standardized neuropsychological assessments; (ii) functional
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Fig. 1. Overview of training study and behavioral results. (A) Participants in the Training group underwent a battery of standardized neuropsychological assessments measuring IQ,
reading and math achievement, and working memory (blue box); Time 1 MRI scan and strategy assessment for solving single-digit addition problems (red box); 8-weeks of one-on-one
math tutoring (green box); and Time 2 MRI scan and strategy assessment (red box). Participants in the Control group (black box) completed all phases except for the training. (B) Children
who underwent eight weeks of math training improved significantly in both accuracy (p = .050) and reaction time (p< .001) for the in-scanner arithmetic verification task. Children in
the no-contact Control group did not show significant improvements in accuracy (p = .44) or reaction time (p = .26). Between group analysis revealed a marginally significant
interaction between group and time for accuracy (p = .064) and a significant interaction for median reaction time (p = .031). Retrieval use during strategy assessment did not increase
significantly in either the Training (p = .29) or the Control (p = .36) groups. (C) However, the correlation between percentage of retrieval use at Time 1 and percentage of increase in
retrieval use revealed that larger gains in retrieval use were related to lower starting rates in the training group (r = −.65, p =.005), but not in the control group (r = −.17, p = .55).
*p< .05, ***p< .001.
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brain imaging and outside-the-scanner strategy assessment (Pre-
training); (iii) eight weeks of intensive, one-on-one math training; (iv) a
second brain imaging session together with a strategy assessment (Post-
training). Participants in the no-contact Control group completed all
phases except for phase (iii) (see Fig. 1A). The design of the study de-
sign is described in detail elsewhere [28].

2.3. Neuropsychological assessments

Participants in the study underwent a comprehensive battery of
standardized neuropsychological assessments. Intelligence was assessed
using the Wechsler Abbreviated Scale of Intelligence [30]. Academic
achievement in mathematics and reading was assessed using WIAT-II
[31]. The WIAT-II includes nationally standardized measures of K-12
academic skills and problem-solving abilities, which are normed by
grade and time of the academic year (Fall, Spring, or Summer).

2.3.1. Mathematical abilities
WIAT-II includes two measures of mathematics achievement:

Numerical Operations and Mathematical Reasoning. Numerical
Operations is a paper-and-pencil test that measures number writing and
identification, rote counting, number production, and simple addition,
subtraction, multiplication, and division problems with single- and
double-digit operands. For example, 4 − 2 = and 37 + 54 (presented
vertically) are two problems in the 2nd and 3rd grade range.
Mathematical Reasoning is a verbal problem-solving test that measures
counting, geometric shape identification, and single- and multi-step
word problem-solving involving time, money, and measurement with
both verbal and visual prompts.

2.3.2. Reading abilities
The WIAT-II was also used to assess reading abilities in order to rule

out children with reading difficulties. The Word Reading subtest in-
volves reading individual words presented visually to the child,
whereas the Reading Comprehension subtest requires them to match
words to pictures and answer questions about sentences and passages
they have read [31]. We computed a composite reading score by
averaging the two reading measures. All participants, in both groups,
had reading composite scores greater than 90 (> 25th percentile).

2.4. Training program

The Training group participated in an 8-week one-on-one training
program focused on strengthening conceptual number knowledge and
speeded practice on efficient counting strategies for simple addition and
subtraction problems [28,32]. This program was adapted from Math
Wise [10] and Galaxy Math [33], two math remediation programs that
have been previously shown to be effective in school-based studies,

particularly for improving performance of children with low math
skills. Similar to Math Wise and Galaxy Math, the program involved a
total of 15–20 h of training, but was condensed to 8–9 weeks with
longer individual lessons. The program consisted of 22 lessons of in-
creasing difficulty and occurred 3 times a week for approximately
40–50 min. See Supekar, et al. [32] and Iuculano, et al. [28] for full
details of the protocol.

2.5. Strategy assessment

Arithmetic problem-solving strategies were assessed outside the
scanner, immediately upon completion of the brain imaging session.
Children answered 24 simple addition problems, while the experi-
menter recorded the child's reaction time, verbal response, and
strategy. The problems involved pairs of integers from 2 to 19, with
sums ranging from 6 to 25. The larger operand was equally likely to
appear in the first or second position. Ties were not included. Children
were asked to solve each problem as quickly as possible, using whatever
strategy was easiest for them (e.g., count using their fingers, count in
their heads, or retrieve the answer). Immediately after stating the an-
swer, children were asked to report how they solved each problem
[24,34]. The experimenter took notes of overt signs of counting, such as
finger usage, lip movement, or audible counting, and these were com-
pared against the child's report of how the problem was solved. For
each child, we computed the proportion of trials in which retrieval
strategies were used. In this analysis we only included the 18 addition
problems that involved single digits. There were six single- plus double-
digit addition problems (whose sums exceeded 20), which were not
covered in the training sessions and therefore excluded from the ana-
lysis. Moreover, we excluded trials where no strategy was reported,
trials where the assessor disagreed with the child's response, or where
the child gave an incorrect answer. Two participants in the Training
group did not complete the strategy assessment task due to time lim-
itations. All participants in the Control group completed the strategy
assessment. Thus, the final analysis of retrieval use included 17 parti-
cipants in the training group and 15 in the Control group.

2.6. Neuroimaging

2.6.1. Scanner task
The in-scanner arithmetic verification task consisted of two runs of

arithmetic problem solving during which the child verified addition
equations (e.g. 3 + 4 = 7). Problems were presented in a fast event-
related fMRI design with 12 single-digit problems per run. In each run,
problems were presented horizontally in green lettering on a black
background. In half of the problems, the answers presented were cor-
rect (e.g. 2 + 4 = 6) (i.e. valid trials); in the remaining half, the an-
swers presented deviated from the correct solution by±1 or±2 (e.g. 3
+ 5 = 7) (i.e. invalid trials). Arithmetic problems with 1 or 0 as op-
erands were excluded. The larger operand was equally likely to appear
in the first or second position. Each trial started with a fixation asterisk
that lasted for .5 s. Then, the problem was presented for a maximum of
9.5 s, during which time the child could make their response. The
participant used a response box to indicate if the answer was correct or
not. After the response, the problem disappeared from the screen and a
black screen appeared until the time window was filled to 9.5 s.

A set of 12 non-arithmetic problems was also presented during each
run. These problems consisted of number identity verifications (e.g. 7
= 7) and were randomly interspersed with the arithmetic trials. Invalid
trials were counterbalanced as in the arithmetic verification task (i.e.
answers deviated from the correct solution by±1 or±2, e.g. 6 = 7).
This condition served as the control for fMRI data analyses in order to
better isolate brain activity solely related to arithmetic problem solving,
rather than sensory or number processing, decision making and re-
sponse selection. The task design also included a total of six rest periods
— 10 s each —, which occurred at jittered intervals during each run to

Table 1
Participant Demographics and Cognitive Measures.

Training (n = 19) Control (n = 15)

M SD M SD p
Age (years) 8.5 .5 8.8 .4 .097
Gender male = 8 male = 5 NA
IQ – WASI
Verbal 108.9 16.2 114.5 15.8 .314
Performance 108.8 12.6 114.9 16.5 .252
Full scale 110.0 13.1 116.4 15.1 .204

Achievement –WIAT-II
Numerical operation 107.4 10.5 114.1 14.4 .147
Mathematical reasoning 109.1 10.5 115.7 17.7 .213
Reading comprehension 110.2 11.4 113.5 9.52 .354
Word reading 108.5 9.2 111.9 10.0 .326

WASI = Wechsler Abbreviated Scales of Intelligence, WIAT-II = Wechsler Individual
Achievement Test –Second Edition.
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achieve an optimal event-related fMRI design [35]. The rest periods
were not explicitly modeled. Accuracy and median reaction times of
correctly solved problems were computed separately for each partici-
pant for each condition (i.e. arithmetic verification and number identity
verification).

2.6.2. Data acquisition
Brain imaging data were acquired at the Stanford University Lucas

Center. Participants in the Training group were scanned on a 3 T GE
Signa scanner (General Electric, Milwaukee, WI) using an 8-channel
head coil. Participants in the Control group were scanned on a 3 T GE
Discovery scanner (General Electric, Milwaukee, WI) using a similar 8-
channel coil. The scanning parameters were identical between the
groups. Twenty-nine axial slices (4.0 mm thickness, .5 mm skip) were
collected parallel to the AC-PC line, using a T2* weighted gradient echo
spiral in-out pulse sequence [36] (150 volumes; TR = 2000 ms; TE =
30 ms, flip angle = 80°, 1 interleave). In both groups, scans were ac-
quired with a field of view of 20 × 20 cm and a matrix size of 64 × 64,
providing an in-plane spatial resolution of 3.125 mm for a voxel size of
3.125 × 3.125 × 4.0 mm. To reduce blurring and signal loss from field
in-homogeneity, an automated high-order shimming method based on
spiral acquisitions was used before acquiring the functional MRI scan
[37].

High-resolution T1-weighted images were acquired in each child at
both scan sessions (i.e. Pre- and Post-training), to improve anatomical
co-registration of fMRI maps. A spoiled-gradient-recalled inversion re-
covery 3D MRI sequence with the following parameters was used: I =
300 ms, TR = 8.4 ms; TE = 1.8 ms; flip angle = 15°; 22 cm field of
view; 132 slices in coronal plane; 256 × 192 matrix; 2 NEX, acquired
resolution = 1.5 × .9 × 1.1 mm.

2.6.3. fMRI preprocessing
The first 6 volumes were not analyzed to allow for signal equili-

bration effects. A linear shim correction was applied separately for each
slice during reconstruction using a magnetic field map acquired auto-
matically by the pulse sequence at the beginning of the scan [36]. FMRI
data were preprocessed and analyzed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm). Images were realigned to correct for motion, corrected
for errors in slice-timing, co-registered to each individual's structural T1
images, spatially transformed to standard stereotaxic space (based on
the Montreal Neurologic Institute coordinate system), resampled every
2 mm using sinc interpolation, and smoothed with a 6 mm full-width
half maximum Gaussian kernel to decrease spatial noise prior to sta-
tistical analysis. For co-registration, the individual's highest quality-
rated (either Pre- or Post-) structural MRI sequence was used for both
groups. To correct for deviant volumes resulting from spikes in move-
ment, we used de-spiking procedures similar to those implemented in
AFNI68. Volumes with movement exceeding .5 voxels (1.5625 mm) or
spikes in global signal exceeding 5% were interpolated using adjacent
scans. No more than 15% of total volumes per run were repaired in
either group. The groups did not differ in terms of movement in any
direction (see Supplementary Table S1).

2.6.4. Individual subject and group analyses
Each child completed at least two functional runs of addition and

control problems; in some cases, due to excessive movement, up to four
extra runs were acquired. Post-hoc run selection was based on the
following criteria: (i) total frames interpolated< 20%; and (ii) perfor-
mance accuracy>50%. For each participant, the final analyses were
performed on the first two available runs meeting the movement and
behavioral criteria. Task-related brain activation was identified using
the general linear model (GLM) implemented in SPM8. Interpolated
volumes flagged at the preprocessing stage were de-weighted. The trials
were modeled using a boxcar function convolved with the canonical
hemodynamic response function and a temporal dispersion derivative
to account for voxel-wise latency differences in hemodynamic response.

Low-frequency drifts at each voxel were removed using a high-pass
filter (.5 cycles/min). Serial correlations were accounted for by mod-
eling the fMRI time series as a first-degree autoregressive process.

Both correct and incorrect trials were modeled in the GLM in four
task conditions: Task Accurate, Control Accurate, Task Inaccurate, and
Control Inaccurate. The final voxel-wise contrast and t-statistic maps
were generated on the first two sub-conditions only: Task Accurate and
Control Accurate. Hence, at a group level, differences in brain activa-
tion were compared between Pre- and Post-training sessions contrasting
Task Accurate versus Control Accurate conditions. We also examined, at
the whole brain level, the relation between change in retrieval strategy
rate and brain activation using the same contrast. We corrected for
multiple comparisons at the cluster level by using Monte Carlo simu-
lations implemented in Matlab and similar to other studies
[6,7,28,38,39]. This method is similar to the AlphaSim procedure im-
plemented in AFNI [40–42]. Ten thousand iterations of random 3D
images, with the same resolution and dimensions as the fMRI data, were
generated. The resulting images were masked for grey matter and then
smoothed with the same 6 mm FWHM Gaussian kernel used to smooth
the fMRI data. The maximum cluster size was then computed for each
iteration and the probability distribution was estimated across the
10,000 iterations. Based on recent concerns about false positives in
fMRI activation [43], significant activation clusters were identified
using a height threshold of p< .005 and an extent threshold of 87
voxels (p< .01) based on a Monte Carlo simulations [38,42].

Functionally defined regions of interest were identified that showed
either group-wise changes in activation, or changes related to the
changes in retrieval use, in the Training group. Beta values were then
extracted from these functional clusters and plotted for both the Training
and Control groups. Correlations with changes in retrieval strategy use
within each group were compared for significance following Fisher [44].

2.6.5. Functional connectivity analysis
Psychophysiological interaction (PPI) was used to examine the con-

nectivity of the left hippocampus with the rest of the brain during the
addition task. PPI analyses measure the temporal relation between a given
seed region and all other brain voxels after accounting for the common
driving influence of task activity on both the seed and target voxel [45].
Here we used a generalized form of PPI (gPPI) as implemented in the
‘Generalized Form of Context-Dependent Psychophysiological Interactions’
SPM toolbox [46]. This recently developed method has the flexibility of
estimating task-dependent functional connectivity within each task con-
dition, and is therefore especially well-suited for experiments with mul-
tiple conditions [47]. A 6 mm sphere, at the peak of the hippocampal
functional cluster defined by significant training-contingent effects in the
Training group (MNI coordinate: −26, −2, −22), was generated as the
seed for the functional connectivity analysis.

At the individual participant level, within each experimental run,
we included: (1) four regressors for the psychological variables (i.e. the
four task conditions: Task Accurate, Control Accurate, Task Inaccurate,
and Control Inaccurate. (2) one regressor for the physiological variable
(i.e. the time course in the seed region); and (3) four regressors for the
psychophysiological interaction term (i.e. the cross-product of each
psychological variable with the seed region time course). Movement
parameters (x, y, z, roll, pitch, yaw) and a constant term were also
included in the model. Time series for the hippocampus seed were
obtained by extracting the first eigenvariate of the raw voxel time series
in the ROI, separately for each participant. Changes in connectivity
following training were computed by contrasting beta values for Task
Accurate – Control Accurate, Pre- vs Post-training.

Contrast images corresponding to PPI effects at the individual-sub-
ject level were then entered into a random-effects, group level statistical
analysis. The change in the percentage of retrieval-use during the Pre-
and Post-training strategy assessment was included as a covariate of
interest to determine brain areas in which retrieval fluency was asso-
ciated with changes in task-dependent functional connectivity of the
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hippocampus. The search space was restricted to a mask consisting of
voxels that showed task-related activation using a liberal height
threshold (p< .05) on the contrast of Task Accurate vs. Control
Accurate combining Pre- and Post-training sessions for the Training
group. A liberal threshold was employed to ensure that any task re-
levant area was included. Significantly activated clusters for the con-
nectivity analyses were again determined using a height threshold of
p< .005 and cluster extent of p< .01, which corresponds to 42 voxels
after masking for functional activation. Functionally defined clusters
were determined using connectivity contrasts in the Training group.
Beta values were then extracted from these clusters and plotted for both
the Training and Control groups. Correlation coefficients within each
group were compared for significance following Fisher [44].

2.6.6. Effect size computation
Effect sizes for the Pre- vs. Post-training behavioral and brain

comparisons were computed using Cohen's d. In order to contrast
findings with our previous longitudinal study, we also computed
Cohen's d values for the corresponding analyses from Qin et al. [7]. For
behavioral analyses from Qin et al. [7], we report values from the
event-related task, which is more comparable to the event-related task
used in the current study. Based on the generally accepted practice of
categorizing effect sizes into small (.2–.5), medium (.5–.8) and large (.8
and above), we considered effect sizes from the current study as
“comparable” to Qin et al. [7] if they fell within or above these ranges.

3. Results

3.1. Behavior

3.1.1. Neuropsychological assessment
Standardized measures of intelligence (verbal, visual and full-scale)

and achievement (reading and math) did not differ between the
Training and Control groups (see Table 1).

3.1.2. Arithmetic task
Arithmetic performance was assessed in the scanner using a single-

digit arithmetic verification task (see Fig. 1B, Supplementary Table S2).
Eight weeks of one-on-one training was associated with significant
improvements in accuracy (t = −2.10, p = .050, d = .50) and median
reaction times (t = 5.09 p< .001, d = .98). As expected, no significant

changes were observed in the Control group, for both accuracy (t = .79
p = .44, d = .23) and reaction times (t = 1.17, p = .26, d = .25).
Direct comparisons between the groups revealed a marginal interaction
between group (Training vs. Control) and time point (Pre- vs. Post-
training) for accuracy (F(1,32) = 3.68, p = .064), which was slightly
stronger after accounting for Numerical Operations (F(1,31) = 4.10, p
= .051,) and Math Reasoning (F(1,31) = 4.17, p = .050) scores. A
significant interaction was found for reaction times between group and
time point (F(1,32) = 6.85, p = .013). This interaction remained sig-
nificant even after controlling for Numerical Operations (F(1,31) =
4.52, p = .042,) and Math Reasoning (F(1,31) = 5.80, p = .022)
scores. Together, these results indicate that eight weeks of intensive
math training produces larger performance gains in arithmetic problem
solving than 'schooling as usual’. Moreover, the effect sizes in the
Training group are comparable to those observed longitudinally (ac-
curacy d = .71; reaction times d = 1.31) by Qin and colleagues [7].

3.1.3. Strategy assessment
Next we asked whether behavioral improvements seen in the

Training group resulted from increased use of the retrieval strategy
when solving arithmetic problems. Use of retrieval strategies did not
increase significantly in either the Training (t = −1.10, p = .29, d =
.24) or the Control (t = −.95 p = .36, d = .21) groups. These effect
sizes are smaller than those observed in the longitudinal sample (d =
.54). Retrieval use also did not differ significantly between the two
groups at either pre- or post-training (all ps> .31, d = .09). However,
the correlation between percent retrieved at Pre and changes in re-
trieval use with training (Post – Pre) revealed that larger gains in re-
trieval use were related to lower initial retrieval rates in the Training
group (r = −.65, p = .005), but not in the Control group (r = −.17, p
= .55, see Fig. 1C), although this difference did not reach significance
(Z = 1.54, p = .12). These results suggest that eight weeks of training
does not lead to increases in retrieval use in all children, but it is
modulated by individual differences in initial retrieval rates.

3.2. Brain imaging

3.2.1. Changes in hippocampal activity associated with short-term training
We first identified brain areas that showed increases in activation

following training. Training resulted in significantly greater activation
in the left anterior hippocampus (Fig. 2, Table 2). The Control group did

Fig. 2. Training-induced increases in hippocampal activation. (A) Left anterior hippocampus region that showed greater activation after eight weeks of training. Increases in anterior
hippocampal activation were significant in the Training group (t = 4.37, p<.001). (B) No changes were detected in the Control group (t = .10, p = .92).
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not exhibit increased brain activity in any brain region (see Table 2).
Based on findings from the previous longitudinal study [7], we con-
ducted follow-up ROI analyses in the left hippocampus cluster identi-
fied in the Training group (Fig. 2, Table 2). This analysis confirmed
significantly greater activation at Post- than at Pre-training (t = 4.37
p< .001, d = 1.04) for the Training group, but not for the Control
group (t = .10 p = .92, d = .05). An independent samples t-test also
showed significantly greater changes in the Training than Control group
(t = 2.40, p = .022). This difference remained significant even when
controlling for initial differences in accuracy and reaction time (F(1,33)
= 4.25, p = .048). These results suggest that short-term training in-
duces significantly greater changes in hippocampal activity than reg-
ular schooling. The observed effect sizes in the Training group were
within the medium to large range and comparable to those observed in
the longitudinal sample (left hippocampus: d = .55; right hippocampus
d = .72).

3.2.2. Changes in prefrontal and parietal cortex activity with short-term
training

No brain areas showed decreases in activation after short-term
training. This pattern contrasts with the longitudinal study [7], which
showed decreases in bilateral prefrontal cortex, the right AG and the
left superior parietal lobule. For the Control group, no brain areas
showed decreased activation (Table 2).

We next examined the relationship between training-induced
changes in retrieval strategy use and changes in brain activity asso-
ciated with arithmetic problem solving. In the Training group, in-
creased retrieval strategy use was associated with decreases in activa-
tion of the bilateral AG and the right inferior frontal gyrus (IFG)
(Fig. 3). No brain regions showed increases in training-induced acti-
vation associated with increased retrieval use. In the Control group, no
brain regions were either positively or negatively associated with
changes in retrieval use (Table 3). To further explore this pattern of
results, we performed ROI analyses to assess differences associated with
retrieval use and brain activation between the groups. Direct compar-
ison of the correlation coefficients between groups revealed significant
differences in the left AG (Training: r = −.75, p< .001, Control: r =
.48, p= .074; Z=−3.80, p< .001), the right AG (Training: r=−.75,
p< .001, Control: r = .06, p = .82; Z = −2.263, p = .009), and the
right IFG (Training r = −.70, p = .002, Control: r = .04, p = .89; Z =
− 2.31, p = .021). These results suggest that short-term training in-
duces similar decreases in cortical engagement during arithmetic pro-
blem solving as seen in longitudinal samples [7]. Unique to 8-week
training, decreases in cortical engagement in regions of the lateral
prefrontal and parietal cortices were correlated with individual differ-
ences in retrieval use.

3.2.3. Training-induced changes in retrieval strategy use are correlated with
increased hippocampal-parietal connectivity

We next examined hippocampal connectivity changes associated
with individual changes in retrieval strategy use. Training-induced in-
creases in retrieval use were correlated with significant increases in
hippocampal connectivity with the right intraparietal sulcus (IPS,
Fig. 4, Table 4). Follow-up ROI-based correlation analyses revealed that
this effect was significant in the Training group (r = .67, p = .003), but
not in the Control group (r = .34, p = .22), although the direct com-
parison of slopes did not reach statistical significance in this case (Z =
1.16, p = .25). Nevertheless, the relationship between changes in
connectivity and changes in retrieval use in the training group were
comparable to those reported in a previous longitudinal sample (r =
.59) [7].

4. Discussion

The present study is the first to investigate whether short-term
training alters brain responses and connectivity in typically developing
children, and whether these changes recapitulate long-term long-
itudinal developmental changes observed across a time period of a year
or more [7]. Specifically, we asked if an intensive, 8-week cognitive
training program aimed at strengthening arithmetic problem-solving
[33] mirrors longitudinal changes in behavior, brain response and
connectivity associated with the development of arithmetic problem
solving skills over the course of a year [7]. We found that eight weeks of
intensive arithmetic training resulted in (1) improvements in accuracy
and reaction time; (2) increased hippocampal activity; (3) decreased
lateral prefrontal and parietal activity associated with increased re-
trieval rates; and (4) increases in hippocampal-parietal cortical con-
nectivity associated with increased retrieval rates. In contrast, eight
weeks of regular educational experiences (‘schooling as usual’, here
conceptualized as a no-contact control group) did not produce any of
these patterns of changes in behavior, brain responses or brain con-
nectivity. We discuss below the detailed findings and their implications
for math cognition and learning and we highlight the potential of
contrasting results from longitudinal and training studies as a way to
elucidate fundamental brain changes accompanying academic skill ac-
quisition over multiple time periods.

4.1. Short-term training recapitulates longitudinal changes in behavioral
performance

Early elementary school is a period of rapid acquisition and mastery
of arithmetic knowledge, marked by improvements in accuracy and
latency [3,48]. Reaction time improvements associated with training (d
= .98) were comparable to the effects observed over a 1.2-year interval
(d = 1.31) [7] and much stronger than following eight weeks of
standard educational experience (d = .25). For accuracy, gains were
comparable between the Training group (d = .50) and the longitudinal
group (d = .71). In contrast, very modest gains were seen after eight
weeks of ‘schooling as usual’ (d = .23). Together these results indicate
that short-term intensive one-on-one training can induce substantial
improvements in behavior, that are comparable to changes accom-
panying education experiences over an interval seven times longer (i.e.
1.2 years).

4.2. Short-term training did not increase retrieval strategy-use

Behavioral improvements in arithmetic skills during early elemen-
tary school are often driven by shifts from effortful counting strategies
towards more efficient memory-based retrieval strategies [2]. In a
previous longitudinal study spanning over one year, Qin et al. [7] re-
ported increases in retrieval use with medium effect sizes (i.e. d = .54).
In the current study, retrieval increases were more modest in both
Training (d = .24) and Control (d = .21) groups. However, in the

Table 2
Activation changes following 8 weeks of cognitive training (Training Group) or 8 weeks of
‘schooling as usual’ (Control Group).

Peak MNI Coordinates

Region Cluster size
(voxels)

Peak
z-score

x y z

Training Group
Post-Pre (Task-Control)
Left Hippocampus 97 3.52 −26 −2 −22
Pre-Post (Task-Control)
No significant voxels

Control Group
Post-Pre (Task-Control)
No significant voxels
Pre-Post (Task-Control)
No significant voxels
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Training group, significant changes in retrieval use were evident as a
function of initial retrieval rates (Fig. 1B). Specifically, children with
lower initial retrieval rates made larger gains following eight weeks of
training (Fig. 1C). This suggests that more time (or more practice) is
needed to make gains in this measure at the higher end of the dis-
tribution. Nonetheless, these results are encouraging as they suggest
that short-term training can be most helpful for children with the
lowests rates of memory-based strategy-use.

4.3. Short-term training recapitulates longitudinal changes in hippocampal
activity

Short-term training resulted in increased activity in the left hippo-
campus, and no such effect was detected in the Control group. This
result demonstrates the specificity of our findings with respect to in-
tensive training. The effect size in the Training group (d = 1.04) was
comparable with longitudinal increases previously observed in a 1.2-
year period, in the left (d = .55) and in the right (d = .72) hippo-
campus [7]. These results add to the growing body of cross-sectional

Fig. 3. Prefrontal and parietal activation decreases with increased use of retrieval strategies after training. Bilateral angular gyrus and right inferior frontal gyrus showed
significant negative correlations between training-induced changes in brain activity and retrieval use in the Training group (all ps ≤ .002), but not in the Control group (all correlations
positive and ps> .07).

Table 3
Activation changes correlating with increases in retrieval use following 8 weeks of cog-
nitive training (Training Group) or 8 weeks of ‘schooling as usual’ (Control Group).

Peak MNI Coordinates

Region Cluster size
(voxels)

Peak
z-score

x y z

Training Group
Post-Pre (Task-Control)
No significant voxels
Pre-Post (Task-Control)
Left Angular Gyrus 288 3.45 −54 −62 32
Right Angular Gyrus 280 3.39 44 −62 24
Right Inferior Frontal
Gyrus

174 3.26 46 10 2

Control Group
Post-Pre (Task-Control)
No significant voxels
Pre-Post (Task-Control)
No significant voxels
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data implicating the hippocampus in the acquisition of math fact
knowledge during early elementary school years. Two recent neuroi-
maging studies comparing addition and subtraction problems, opera-
tions that are thought to differ in their rates of retrieval use, both found
greater hippocampal activity during addition than subtraction [8,16].
Moreover, using a correlational design, Cho, et al. [5] examined the
relationship between strategy use and brain responses associated with
arithmetic problem solving in a large sample (N = 78) of 2nd and 3rd
grade children. Consistent with the current results and those of Qin
et al. [7], greater use of retrieval was also associated with greater
hippocampal activity.

The hippocampus is known to play an essential role in learning and
memory, specifically in the binding of new information together
[49–51]. In the context of arithmetic, the associative learning proper-
ties of the hippocampus may be involved in connecting operands to
answers. An influential theory of hippocampal function posits that
hippocampal engagement is required for the learning of new

information and for building schema knowledge [52]. Yet, when
schemas are established, the hippocampus is no longer needed to ac-
quire new information, as long as the information is consistent with the
schema. On the one hand, this proposal may help explain the lack of
hippocampal activity reported when adults are solving problems using
retrieval [11,18,20,21] or even when learning to memorize new pro-
blems [19,25,53]. In this view, adults have a well-established schema
for arithmetic which no longer requires hippocampus engagement,
even for solving newly memorized problems [19]. In contrast, children
are still in the process of developing schematic knowledge, and there-
fore rely more on the hippocampus when learning math facts.

On the other hand, several recent findings appear to challenge a model
of hippocampus-independent math learning in adults. Qin and colleagues
found refinements in multivariate patterns of activity in the hippocampus
in adolescence and adulthood, even without significant hippocampal ac-
tivity over baseline [7]. Training studies in adults have compared neural
responses for trained and untrained problems after training, to elicit ac-
tivity patterns for problems solved by retrieval vs. calculation [19]. Re-
cently, Bloechle and colleagues expanded on this design by scanning
participants before and after training on complex multiplication facts.
They found greater hippocampal activity for trained, relative to untrained,
facts in adults [27]. Klein and colleagues [54] also found hippocampal
activity using parametric analyses in several single time point arithmetic
tasks in adults. Together these results suggest that the hippocampus may
be involved in successful retrieval of math facts in both adults and chil-
dren. Future studies should employ pre/post training designs to help dis-
entangle the specific role of the hippocampus at different developmental
stages and differing task demands.

4.4. Short-term learning-related decreases in engagement of prefrontal and
parietal cortex

Training was also associated with decreases in activity related to
gains in retrieval use. Specifically, larger increases in retrieval were
correlated with greater decreases in activity in the right prefrontal cortex
and in the bilateral AG. Children in the Control group, who did not
undergo training during the 8-week period, did not display decreases in
fronto-parietal cortex activity, nor changes in their brain response

Fig. 4. Hippocampal connectivity increases with training were correlated with changes in retrieval strategy use. Increased retrieval use after eight weeks of training was
associated with significant increases in connectivity of left anterior hippocampus with right intraparietal sulcus (r = .67, p = .003). The control group did not show such a relation (r =
.34, p = .22).

Table 4
Hippocampal functional connectivity changes correlating with increases in retrieval use
following 8 weeks of cognitive training (Training Group) or 8 weeks of ‘schooling as
usual’ (Control Group).

Peak MNI Coordinates

Region Cluster size
(voxels)

Peak
z-score

x y z

Training Group
Post-Pre (Task-Control)
Right Intraparietal
Sulcus

62 3.85 46 −40 46

Pre-Post (Task-Control)
No significant voxels
Post-Pre (Task-Control)

Control Group
No significant voxels
Pre-Post (Task-Control)
No significant voxels
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associated with retrieval use. This finding contrasts with previous long-
itudinal results, which found decreases in lateral prefrontal and parietal
cortex for almost all participants [7]. In the current study, we did not find
decreases in the Training group as a whole. Rather, individuals who
showed the largest decreases in fronto-parietal cortex activity also
showed the largest increases in retrieval use. Importantly, these results
suggest that brain changes following eight weeks of intensive training are
less pronounced and that a longer time is needed to achieve decreases in
fronto-parietal cortical activity in all children.

Consistent with the general pattern reported in Qin et al. [7], we
found decreases in AG activity following eight weeks of intensive
training, albeit correlated with changes in retrieval use. Our findings of
AG decreases are especially interesting given the putative role of this
region in math fact retrieval in adults [19,20,55]. Studies contrasting
retrieval rates, either by self-report [20,21], arithmetic operations [11],
or training history [19] suggest the AG is more active when answers are
retrieved rather than calculated. But this interpretation has been chal-
lenged by findings demonstrating that differences in AG activity seem
to result from differences in deactivation, rather than activation
[18,24]. This pattern is consistent with evidence pointing to the AG as a
node of the default mode network [56,57]. Confirming this inter-
pretation is recent work by Bloechle and colleagues [27], showing that
greater deactivation for untrained problems drives AG differences be-
tween trained and untrained problems, rather than increases in activity
for trained problems.

Our results are in line with previous longitudinal findings [7] and
suggest that increasing mastery of math problem solving is accom-
panied by decreased lateral prefrontal and parietal activity. This con-
vergence between longitudinal and training studies contrast with
findings from cross-sectional studies [5,6]. For example, Cho et al. [5],
found that greater use of retrieval strategies was correlated with greater
lateral prefrontal and AG activity. An implicit assumption in individual
differences research is that children with differing skill levels can be
thought of as occupying differing positions along a learning trajectory.
The divergence between cross-sectional and longitudinal findings
challenge this assumption and illustrate that only multi-time point,
within-subjects designs, can truly uncover individual trajectories of
brain changes accompanying learning.

4.5. Short-term training recapitulates longitudinal changes in hippocampal
connectivity

Following eight weeks of one-on-one training, we found increases in
connectivity between the left hippocampus and the right IPS that were
related to increases in retrieval use. This result is consistent with pre-
vious longitudinal developmental findings [7], which also reports hip-
pocampal connectivity changes related to changes in retrieval rates
over a 1.2-year time interval. Consistent with the current results of
strengthening contralateral hippocampal-parietal connectivity, Qin
et al. reported increased connectivity between right hippocampus and
left IPS. Notably in both studies, increases in connectivity accompanied
activity decreases in nearby parietal regions (left superior parietal in
Qin et al., right AG in the current study). Intriguingly, intrinsic con-
nectivity of the IPS to the hippocampus also increased following this
same training program [29]. In that study, a bilateral IPS ROI had in-
creased connectivity with the left hippocampus, albeit more posterior
than the cluster identified here. Recent animal studies report that si-
lencing the CA3 area of the left hippocampus impaired associative
memory, while the equivalent manipulation in the right hippocampus
did not [58]. These results suggest that the left hippocampus might
produce the strongest changes in an associative learning task, such as
ours, particularly after short-term training.

An important difference with previous longitudinal studies is that
changes in hippocampal-cortical connectivity associated with eight
weeks of training were less pronounced and more localized than fol-
lowing a year of longitudinal change. Specifically, Qin et al. [7], found

increased hippocampal-prefrontal, as well as hippocampal-parietal
connectivity related to increases in retrieval use. In contrast, eight
weeks of training did not uncover connectivity changes in hippo-
campal-prefrontal circuits. These results suggest that reorganization of
connectivity changes between the hippocampus and prefrontal cortex
associated with math learning might occur over longer time periods,
and might be related to the fact that the prefrontal cortex matures more
slowly than the parietal cortex [59–61].

4.6. Disentangling the effects of experience and maturation of brain
development during academic skill learning

A fundamental goal of developmental cognitive neuroscience is to
understand the brain mechanisms associated with successful learning.
Cross-sectional designs can identify neural signatures of proficient
performers, but cannot map individual learning trajectories.
Longitudinal studies provide essential knowledge about the typical
course of behavioral improvements and brain plasticity changes both in
terms of functional activation and connectivity. However, changes ob-
served in longitudinal studies over longer time intervals cannot be at-
tributed definitively to educational experiences rather than ongoing
brain maturation. Moreover, linking brain changes to classroom
learning experiences is especially difficult in the United States where
educational practices vary widely across schools, even within circum-
scribed geographic regions.

Training studies are uniquely positioned to address these issues.
First, training studies can track individual trajectories of brain and
behavioral change across different groups of subjects. Second, short
time frames such as the eight-week training period used in the present
study, minimize the effects of ongoing brain maturation. Finally,
training studies with well-characterized curricula can more directly link
education experience to brain changes. By using appropriate control
groups and conditions, training studies can properly assess the causal
role of learning on brain activity and connectivity. The no-contact
control group employed here enabled us to determine the effects of
intense training relative to ‘schooling as usual’. Further work with a
larger group of participants, using identical tasks and randomized as-
signment of participants are needed for more direct comparisons be-
tween groups and across different time-scales of learning and skill de-
velopment. Moreover, contrasting distinct education programs between
training groups can further increase relevance for educational practice,
by probing the effect of specific learning experiences.

Cross-sectional, training, and longitudinal designs each provide
complementary pieces of the puzzle in establishing the brain-basis of
academic learning and achievement. When results diverge between
experimental designs – as in the case of prefrontal and parietal activity
patterns reported here – it becomes necessary to reexamine underlying
assumptions and design follow-up experiments to reconcile these re-
sults. Crucially, when findings from individual differences analysis,
long-term longitudinal changes and short-term training-induced plas-
ticity all converge – as we found here for the hippocampus activation
and connectivity – confidence in the functional role of a region in
learning and cognitive skill acquisition process is bolstered. The next
step is to build on this knowledge and design new training programs to
more effectively engage target brain regions and further advance our
understanding of the neurobiological mechanisms of learning.

5. Conclusion

We elucidated mechanisms of cognitive skill acquisition by char-
acterizing changes in brain response and connectivity that accompany
eight weeks of intensive one-on-one training. Crucially, we found re-
markable correspondence between the effects of short-term training
and long-term developmental changes observed over a 1.2-year interval
[7]. By showing that these changes were specific to the Training group
and were not evident in the Control group, we were able to characterize
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hippocampus-mediated mechanisms of activity and connectivity un-
derlying specific learning experiences over an 8-week period. As such,
these results further solidify the importance of the hippocampus in the
acquisition of mathematical knowledge. More generally, the present
study demonstrates the utility of training studies to investigate causal
relationships between learning experiences and brain plasticity, setting
the stage for using cognitive neuroscience approaches to refine in-
structional practice and promote learning in every child.
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