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Abstract 

In magnetic resonance imaging (MRI) studies of children brain development, structural brain 

atlases usually serve as important references of pediatric population in which individual images 

are spatially normalized into a common or standard stereotactic space. However, the existing 

popular children brain atlases (e.g., National Institutes of Health pediatric atlases, NIH-PD 

atlases) are made mostly based on MR images from Western populations, and are thus 

insufficient to characterize the brains of Chinese children due to the neuroanatomical differences 

that are relevant to genetic and environmental factors. By collecting high-quality T1- and T2-

weighted MR images from 328 typically developing Chinese children aged from 6 to 12 years 

old, we created a set of age-appropriate Chinese pediatric (CHN-PD) atlases using an unbiased 

template construction algorithm. The CHN-PD atlases included the head/brain templates, the 

symmetric brain template, the gender-specific brain templates and the corresponding tissue 

probability atlases. Moreover, the atlases contained multiple age-specific templates with a one-

year interval. A direct comparison of the CHN-PD and the NIH-PD atlases revealed remarkable 

anatomical differences bilaterally in the lateral frontal and parietal regions and somatosensory 

cortex. While applying the CHN-PD atlases to two independent Chinese pediatric datasets (N = 

114 and N = 71, respectively), machine-learning regression approaches revealed higher 

prediction accuracy on brain ages than the usage of NIH-PD atlases. These results suggest that 

the CHN-PD brain atlases are necessary and important for future typical and atypical 

developmental studies in Chinese pediatric population. Currently, the CHN-PD atlases have been 

released on the NITRC website (https://www.nitrc.org/projects/chn-pd). 
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Introduction 

Modern advances in multi-modal magnetic resonance imaging (MRI) offer an unprecedented 

opportunity to explore the structural and functional development of the pediatric brain in vivo. A 

typical research framework is achieved by normalizing individual brain images into a common 

or standard stereotactic space using a prior structural brain atlas as a reference (Ashburner and 

Friston, 1999; Collins, et al., 1998; Smith, et al., 2004), such as the International Consortium for 

Brain Mapping templates (ICBM152 templates) at the Montreal Neurological Institute (MNI) 

space (Evans, et al., 2012; Lancaster, et al., 2007). Due to the rapid development of the brain, 

structural brain atlases specific to young children have been generated for pediatric MRI 

investigations (Fonov, et al., 2011; Luo, et al., 2014; Oishi, et al., 2018; Richards, et al., 2016; 

Sanchez, et al., 2012; Wilke, et al., 2008; Wilke, et al., 2002; Xie, et al., 2015). It has been 

argued that adopting such age-appropriate brain templates in pediatric participants can reduce the 

requirement for spatial deformation during image normalization and maintain more pediatric 

characteristics of individual brain such as a thicker cerebral cortex compared with adult 

templates (Fonov, et al., 2011; Yoon, et al., 2009). However, the existing children brain 

templates are constructed mostly based on Western pediatric populations (Fonov, et al., 2011; 

Oishi, et al., 2018; Richards, et al., 2016; Sanchez, et al., 2012; Wilke, et al., 2008; Wilke, et al., 

2002), with a typical case being the widely used National Institutes of Health pediatric atlases 

(NIH-PD) (Fonov, et al., 2011). These existing brain templates are not ideal for use in Chinese 

pediatrics studies (Richards and Xie, 2015), since Chinese adults and children have unique 

neuroanatomical features in the brain size and shape as compared to Western people (Bai, et al., 

2012; Liang, et al., 2015; Tang, et al., 2010; Tang, et al., 2018; Xie, et al., 2015). Different 

growth trajectories of some brain structures between Chinese and North American children have 

also been reported (Guo, et al., 2007; Xie, et al., 2014). To make an accurate brain representation 

of Chinese pediatric population, it would be necessary and important to create age-specific 

atlases based on the MR images of Chinese children. 

When constructing pediatric brain atlases, two common factors need be considered: brain 

asymmetry and the gender effect. The development of child brain is asymmetric or lateralized in 

both structure and function (Agcaoglu, et al., 2015; Song, et al., 2014; Zhong, et al., 2016; Zhou, 

et al., 2013), which is related to the specialization of language and motor functions and may 

underlie developmental brain disease phenotypes (Herbert, et al., 2002; Shaw, et al., 2009; Toga 
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and Thompson, 2003). To estimate the development of brain asymmetry, symmetric brain 

models are expected to treat both hemispheres equally. Symmetric brain templates have been 

created for Western pediatric populations (Fonov, et al., 2011). However, Chinese children may 

have different brain asymmetries from Western children due to the genetic and cultural factors. 

Studies have revealed that the visual process of Chinese characters engages more bilateral 

temporo-occipital regions of the brain than alphabetic languages (Cao, et al., 2009; Mei, et al., 

2015; Xue, et al., 2005). Developmental brain disorders with asymmetric abnormalities such as 

dyslexia (Beaton, 1997; Leonard and Eckert, 2008) also present unique brain disruptions in 

Chinese children (Siok, et al., 2008; Siok, et al., 2004). The construction of symmetric brain 

templates for Chinese children is important for further investigations of the Chinese pediatrics. 

Equally important, previous MRI studies have revealed gender-specific differences in the brain 

anatomy of typical and atypical developmental populations (De Bellis, et al., 2001; Evans, et al., 

2014; Gennatas, et al., 2017; Good, et al., 2001; Peper, et al., 2011). Several developmental 

disorders, such as autism spectrum disorder or attention deficit hyperactivity disorder (ADHD), 

show a gender-specific prevalence and symptomatology (Vértes and Bullmore, 2015). In an 

extreme case, sex chromosome related developmental disorders occur only in a single-sex 

population (Cutter, et al., 2006; Murphy, et al., 1993). Under these situations, a gender-specific 

brain template can attain a more accurate characterization of the pediatric brain than that of a 

general population. 

To date, there are only two previous MRI studies towards the construction of Chinese 

pediatric brain templates (Luo, et al., 2014; Xie, et al., 2015). Specifically, Luo, et al. (2014) 

built a single brain template within a narrow age range of 5 to 8 years old based on structural MR 

images of 53 Chinese children. Xie, et al. (2015) generated a series of pediatric brain templates 

based on structural MR images of 138 Chinese children within an age range of 8 to 16 years old 

with a 2-year interval. However, the application of the two brain templates is still limited for 

Chinese pediatric studies due to several methodological issues as follows. First, the quality of 

these two brain templates is inadequate due to the low signal to noise ratio of the 1.5T MRI 

scanner (Luo, et al., 2014) and the relatively small sample size (Luo, et al., 2014; Xie, et al., 

2015). Moreover, neither study provided symmetric and gender-specific templates. Second, both 

studies employed customized coordinates that are different from the popular ICBM152 and NIH-

PD templates at the MNI space (Fonov, et al., 2011). Third, it needs to note that these two 
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previous studies revealed only overall differences in the brain circumference and the deformation 

cost during registration between Chinese and Western brain templates (Liang, et al., 2015; Tang, 

et al., 2010; Xie, et al., 2015). Considering spatially distributed variations of the brain regions 

that could be derived from genetic and environmental effects during development, it is important 

to examine the detailed regional anatomical differences between Chinese and Western pediatric 

brain templates.   

In the present study, we aimed to create a set of high quality Chinese pediatric (CHN-PD) 

atlases for school-aged children (6-12 years old). To do this, we first collected high-quality MRI 

images of a large sample (328 participants) at the state-of-the-art 3T Siemens Prisma scanner. 

Then, we employed an unbiased template construction algorithm to generate the average 

head/brain, symmetric and gender-specific MRI templates with finer one-year age intervals. 

Finally, to further investigate the necessity and applicability of the proposed CHN-PD atlases, 

we assessed the regional difference between the CHN-PD and the NIH-PD templates and 

evaluated their prediction power on brain age in two independent Chinese pediatric datasets (N = 

114 and N = 71, separately) when using different brain templates during the spatial 

normalization. 

 

Materials and Methods 

Participants. This study included three datasets of healthy Chinese children (Table 1): i) a 

principal dataset (Dataset 1) of 328 participants aged from 6–12 years old (9.03 ± 1.36) scanned 

at the Peking University (PKU), ii) an independent dataset (Dataset 2) of 114 participants aged 

from 6–12 years old (9.06 ± 1.38) scanned at the Beijing HuiLongGuan (HLG) hospital in China, 

and iii) another independent public dataset (Dataset 3) including 71 participants aged from 8 to 

12 years old (10.26 ± 1.78) that were obtained from the Beijing site of the ADHD200 dataset via 

the International Data-sharing Initiative (Consortium, 2012; Fair, et al., 2012). Participants of 

Datasets 1 and 2 were recruited from local primary schools in Beijing and written informed 

consent was obtained from the parents/guardians of the children. Detailed information about the 

participants in Dataset 3 can be seen at the public data sharing website 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). All these MRI scans have passed through a 

strict quality control criterion, before which the initial data collection included 359 participants 

in Dataset 1, 131 participants in Dataset 2 and 71 participants in Dataset 3. The detailed quality 
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control procedure is as follows: i) all images were first reviewed by an experienced neurologist 

to exclude neurological abnormalities; ii) careful visual inspections with a scan rating procedure 

were conducted by two experienced raters separately, similar to the protocol used in the human 

connectome project (HCP) (Marcus, et al., 2013); iii) images that were assigned a quality of 

better than fair by both raters were retained. This study was approved by the ethics committee of 

Beijing Normal University. Notably, Dataset 1 was used for the construction of the Chinese age-

appropriate MRI templates, and Dataset 2 and 3 were used for the evaluation of the template 

effect on age prediction. The age and gender distributions of these samples are listed in Table 1. 

 

Image acquisition. In Datasets 1 and 2, high quality T1- and T2-weighted images were acquired 

for each participant on 3T Siemens Prisma scanners. The detailed scanning parameters are as 

follows: T1 weighted images: repetition time (TR) = 2530ms, echo time (TE) = 2.98ms, 

inversion time (TI) = 1100ms, flip angle (FA)= 7°, acquisition matrix = 256 × 256, field of view 

(FOV) = 256 × 224 mm2, slices = 192, slice thickness = 1mm, BW = 240Hz/Px; T2 weighted 

images: TR = 3200ms, TE = 564ms, acquisition matrix = 320 × 320, FOV = 224 × 224 mm2, 

slices = 256, slice thickness = 0.7mm, BW = 744Hz/Px. In dataset 3, images were acquired using 

a 3T Siemens Trio scanner, and the scanning parameters are as follows: T1-weighted 

magnetization-prepared rapid acquisition gradient echo sequences, 128 slices, slice thickness = 

1.33 mm, TR = 2530 ms, TE = 3.39 ms, TI = 1100 ms, FA = 7°, acquisition matrix = 256 × 256, 

FOV = 256 × 256 mm2, average =1. 

 

Data preprocessing. All MRI scans were preprocessed as follows (Fig. 1, left panel): i) the 

intensity inhomogeneity of each scan was corrected using N4 correction (Tustison, et al., 2010); 

ii) brain masks were created using the robust BET estimation from the FSL (FMRIB Software 

Library), and skull outlines were generated using the BET2 command (Smith, 2002); iii) a 

hierarchical linear registration (nine-parameter affine transformation) of each scan into the 

ICBM152 linear brain template was conducted using the Revised BestLinReg algorithm (Dadar, 

et al., 2018); iv) the image intensity was scaled to the same range of the template resulting in 

intensities between 0 and 100 (Nyúl and Udupa, 1999); and v) tissue segmentations were 

implemented using the well-validated CIVET 2.1 pipeline to obtain the probability maps of gray 
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matter (GM), white matter (WM) and cerebral spinal fluid (CSF) of each individual 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-Table-of-Contents). 

 

Template construction. The unbiased template construction algorithm adopted in our study was 

proposed by Fonov and colleagues (Fonov, et al., 2011) based on previous works (Guimond, et 

al., 1998; Guimond, et al., 2001). This procedure has been widely applied to generate MRI 

templates including the ICBM152 brain template, the NIH-PD brain template and the standard 

spinal cord template (De Leener, et al., 2018; Fonov, et al., 2011; Fonov, et al., 2009; Fonov, et 

al., 2014). This iterative construction algorithm can capture both the average intensity and the 

average shape of the brain at a population level. We listed its brief process as follows (Fig. 1, 

right panel). First, the ICBM152 linear brain template was used as the initial reference target 

template onto which each preprocessed T1-weighted image was mapped nonlinearly. The 

generated individual transformations were further corrected to remove the bias via the averaging 

transformation. The new approximation was then generated by applying each corrected 

transformation to the corresponding individual T1-weighted image and then averaging all images 

together. The above iteration continued until convergence was reached. During each iteration 

step, a nonlinear registration of Automatic Nonlinear Image Matching and Anatomical Labeling 

(ANIMAL) (Collins, et al., 1995) was performed with an increasingly finer grid step size and 

blurring kernel. We adopted the following hierarchical schedule as the NIH pediatric brain 

template (Fonov, et al., 2011): 4 iterations at 32 mm resolution, 4 iterations at 16 mm, 4 

iterations at 8 mm resolution, 4 iterations at 4 mm, and 4 iterations at 2 mm, which yielded a 

progressively accurate average template. The T2-weighted brain templates and tissue probability 

atlases were created by warping their corresponding preprocessed images of each individual 

based on the final deformation field for the creation of the T1-weighted brain template and then 

generating an average image, separately. 

Using the above template construction framework, we generated a set of Chinese pediatric 

templates based on the PKU dataset (Dataset 1): i) the whole-head and brain-extracted MRI 

volumes were performed separately during the model iteration to generate both head/brain 

templates; ii) the symmetric brain templates were generated by including left-right flipped scans 

of each participant and enforcing symmetric deformation fields (Fonov, et al., 2011); iii) the 

gender-specific brain templates were generated by using the MRI volumes of male or female 
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participants separately; iv) to generate the MRI templates specific to each age sub-range, we 

divided all children participants into six age subgroups with one-year intervals (see Table 2 for 

detailed information about the participants in each age subgroup) and same construction 

procedures were conducted for each group. 

 

Evaluation of the anatomical difference in brain regions between the CHN-PD and NIH-PD 

templates. 

When estimating the regional difference between the proposed CHN-PD template and the 

commonly used NIH-PD template, we extracted a subgroup of PKU children (Dataset 1) with the 

same age and gender distribution and the same number of subjects as those used for generating 

the NIH-PD template at 7–11 years old to reduce the effect of sample distribution. Using this 

subgroup data, a new Chinese pediatric brain template was created and the NIH-PD brain 

template was co-registered into this template with a linear nine-parameter affine transformation. 

Instead of the usual visual inspections, we estimated the anatomical differences between 

these two brain templates by calculating two quantitative image indexes for each brain region. 

Specifically, the Brodmann atlas was first adopted to parcellate each brain template into 82 

regions. For each region, we calculated the mean square difference (MSD) (Holden, et al., 2000) 

of the gray matter probability maps to assess the absolute differences in the gray matter 

morphology and the normalized cross correlation (NCC) (Zhao, et al., 2006) across voxels of the 

T1-weighted brain templates to reflect the spatial similarity of the anatomical structures. The 

detailed definition is as follows: 

For a given region μ in template A and template B, the mean square difference was defined 

as: 

MSD(μ) =
1

𝑁
∑(𝐴𝑖 − 𝐵𝑖)

2

𝑁

𝑖∈𝜇

 

where 𝑖 is the 𝑖th voxel of region μ, and 𝐴𝑖 or 𝐵𝑖 is the value of the voxel 𝑖 of template A or B, 

respectively, which refers to the probability of GM in the current definition. The normalized 

cross correlation was defined as follows: 

NCC(μ) =
∑ (𝐴𝑖 × 𝐵𝑖)
𝑁
𝑖∈𝜇

√∑ 𝐴𝑖
2 ×𝑁

𝑖∈𝜇 ∑ 𝐵𝑖
2𝑁

𝑖∈𝜇
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where 𝑖 is the 𝑖th voxel of region μ, and 𝐴𝑖 or 𝐵𝑖 is the value of the voxel 𝑖 of template A or B, 

respectively, which refers to the intensity of the T1-weighted brain template in the current 

definition. The MSD shows the mean magnitude of the voxel-wise absolute difference between 

two template regions, while the NCC is commonly used as the cost function during image 

matching and indicates the spatial similarity of two brain regions. Here, we used the index of 1-

NCC to present the anatomical difference of each region between brain templates. The 

calculation of the NCC was conducted with the Statistical Parametric Mapping (SPM) software 

(Friston, et al., 1994) (https://www.fil.ion.ucl.ac.uk/spm/). 

 

Evaluation of the template effect on the accuracy of age prediction. 

To determine whether the proposed CHN-PD atlases have advantages over Western pediatric 

brain atlases in Chinese children studies, we performed a comparative analysis between the 

CHN-PD and NIN-PD brain templates (7–11 years old, sample distribution matched) on the 

prediction power of brain age. Specifically, to reduce the over-fitting effect, we adopted two 

independent datasets to train and test the prediction model of brain age, separately. First, the 

HLG child subjects (Dataset 2) were used as the training sample and another independent set of 

healthy samples in the ADHD200 dataset (Dataset 3) was used as the testing sample. For each 

subject, the T1-weighted brain image was separately normalized to the new Chinese children 

brain template and to the NIH-PD brain template at 7–11 years old using the hierarchical 

ANIMAL nonlinear registration. The Brodmann mask was warped separately into two brain 

templates by a non-linear transformation to locate feature voxels for the prediction model. We 

implemented two most widely used machine-learning regression strategies (Cui and Gong, 2018; 

Drucker, et al., 1997; Tipping, 2001) to predict the individual age based on the normalized T1-

weighted brain images. The first strategy is a support-vector regression (SVR) model with a 

linear kernel function (Drucker, et al., 1997). Common settings with C = 1 and epsilon = 0.001 

were adopted. The second strategy is the relevance vector regression (RVR), which is a 

Bayesian-formulated regression framework (Tipping, 2001). After model training and testing, 

the Pearson correlation coefficient between the actual and predicted ages was calculated to assess 

the prediction accuracy. To reduce the effect of the feature preprocessing methods, we applied 

three feature preprocessing approaches, including the raw features (untreated), scaling and 

normalization, and then repeated the whole prediction procedure. Finally, we exchanged the 
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training and test samples to make a cross validation of the prediction. For the code 

implementation, the LIBSVM function was used in the SVR model 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang and Lin, 2011), and the PRoNTo toolbox 

(http://www.mlnl.cs.ucl.ac.uk/pronto/) was used in the RVR model (Schrouff, et al., 2013). 

 

Results 

Convergence of the template construction algorithm in Chinese pediatric atlases. 

In this study, all types of MRI templates were constructed through the hierarchical model 

iteration processes, and qualitative progression was observed along with the iterations. Figure 2A 

and B illustrate a detailed view of the intermediate models during the construction of the brain 

template over the full age range (6–12 years old). We showed the voxel-wise standard deviation 

map across the individual scans and the averaged models at different iterations and resolution 

steps. The standard deviation at the voxel level was reduced in every four iterations, and the 

anatomical details became distinct gradually around the neighboring voxels, showing a 

successful convergence (Fig. 2A and B). The standard T1-weighted brain template was 

generated at the 20th iteration. The root mean square (RMS) of the intensity standard deviation 

and biases of the average deformation in each iteration step were plotted for all types of MRI 

templates (Fig. 2C). As the procedure advanced, the RMS decreased progressively across 

iterations for the averaging models, indicating that the optimization procedure was reaching a 

minimum. Similar convergence processes were found for the averaged head/brain, symmetric, 

and gender-specific templates (Fig. 2C, left panel) and also for each age subgroup templates 

(Fig. 2C, right panel). 

 

Averaged structural MRI atlases for Chinese pediatrics (CHN-PD atlases). 

Figure 3 shows the Chinese pediatric MRI templates over the full age range (6–12 years old), 

where they are shown in axial, sagittal and coronal views, separately. The first five columns 

show the detailed slices of the head/brain, symmetric and gender-specific T1-weighted template, 

and the subsequent columns show the slices of the T2-weighted brain template and the tissue 

probability atlases of the GM, WM, and CSF. In each slice, these templates exhibit distinct 

anatomical structures in the cerebral and subcortical regions, cerebellum, and brainstem. Figure 4 

shows the detailed age-specific templates at one-year intervals, including the T1-weighted brain 
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templates and the standard tissue probability atlases. By visual inspection, particularly similar 

spatial locations of the brain gyri and sulci were found in each template and slight anatomical 

changes were found in the peripheral gray and white matter junctions. All of these templates are 

publicly available in NIFTI format in the Chinese pediatric atlases (CHN-PD atlas) project on the 

NITRC website (https://www.nitrc.org/projects/chn-pd/). 

 

Regional differences between the CHN-PD and the NIH-PD atlases. 

From the perspective of the absolute differences in the gray matter probability maps between two 

brain templates, regions showing relatively high anatomical differences were mainly located in 

bilateral angular gyrus and supramarginal gyrus (parts of Wernicke’s area), bilateral dorsolateral 

prefrontal cortex and inferior frontal regions (including Broca’s area), and bilateral 

somatosensory cortex (Fig. 5, upper panel, and Table 3). From the perspective of the voxel-wise 

spatial similarity, a consistent distribution of regional differences was found, which showed high 

structural differences in the bilateral angular gyrus and dorsolateral and inferior frontal gyrus 

between the Chinese pediatric atlases (CHN-PD) and NIH pediatric brain template (NIH-PD) 

(Fig. 5, lower panel, and Table 3).  

 

Different prediction power of brain age in Chinese pediatrics using the CHN-PD and the NIH-

PD atlases. 

Using the HLG dataset (Dataset 2) as the training set and the healthy ADHD200 samples from 

Beijing site (Dataset 3) as the test set, a higher accuracy of age prediction was obtained by 

employing the CHN-PD brain template (with the highest correlation r = 0.40) during image 

normalization than by employing the NIH-PD brain template (with the highest correlation r = 

0.38) (Fig. 6A). In addition, we further exchanged the training and test samples to perform a 

cross-validation of the prediction. A higher accuracy was also obtained via the implementation of 

the CHN-PD brain template (with the highest correlation r = 0.48) than with the NIH-PD brain 

template (with the highest correlation r = 0.43) (Fig. 6B). The better performance of the Chinese 

pediatric brain template was reproducible in different feature-preprocessing operations and 

different regression models (Table 4). 

 

Discussion 
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In the current study, we constructed a set of Chinese age-appropriate brain atlases using a large 

sample of high quality MRI images of Chinese children. These Chinese pediatric (CHN-PD) 

atlases included head/brain, symmetric and gender-specific MRI templates aged from 6-12 years 

old and with one-year intervals (Figs. 3 and 4). The proposed Chinese pediatric templates 

showed obvious anatomical differences in the lateral frontal and parietal cortex regions, 

somatosensory cortex and language-related areas compared with the NIH-PD templates. In the 

Chinese pediatric datasets, we found higher age prediction accuracy by using the Chinese 

pediatric brain template as the normalization target than by using the NIH pediatric brain 

template. 

        Two previous studies have made efforts to build Chinese pediatric brain atlases (Luo, et al., 

2014; Xie, et al., 2015). However, there are several major differences between our work and 

these two earlier studies. First, our MRI atlases (Fig. 3 and 4) employed high-quality images with 

high signal noise ratio obtained by the advanced, state-of-the-art 3.0T Prisma scanners; in 

contrast, the two earlier studies used brain images obtained in 1.5T MRI scanner (Luo, et al., 

2014) and 3.0T Trio scanner (Xie, et al., 2015). Second, our atlases included the relatively larger 

sample size (N = 328) than the two earlier studies (N = 53 and 138), which enabled refined one-

year intervals among the pediatric MRI templates. This refinement is important for obtaining an 

accurate description for the elaborate growth trajectories of children brain during a period with 

rapid and dynamic structural and functional changes (Cao, et al., 2016; Giedd, et al., 1999; Lebel 

and Beaulieu, 2011; Levman, et al., 2017; Sowell, et al., 2003; Walhovd, et al., 2017). Third, 

unlike the rigid transformation used in the two previous studies (Luo, et al., 2014; Xie, et al., 

2015), we applied a nine-parameters affine transformation on the individual images to the initial 

ICBM152 brain target, which reduced the differences in the circumference between Chinese and 

Western brain while introduced more detailed and compatible regional features of the Chinese 

pediatric templates. Fourth, the consistent coordinate system according to the MNI space of our 

atlases makes the application of our templates convenient and generalizable. Finally, our brain 

atlases included symmetric and gender-specific types, which were not included in the two earlier 

studies (Luo, et al., 2014; Xie, et al., 2015). 

Notably, we used an unbiased model construction algorithm for the construction of brain 

atlases. It has several methodological advantages and has been widely used in the creation of 

MRI templates (De Leener, et al., 2018; Fonov, et al., 2011; Fonov, et al., 2009; Fonov, et al., 
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2014). The hierarchical local nonlinear registrations were iteratively corrected by the common 

features of the population in the construction process, which can obtain abundant age-related 

features while maintaining clear and sharp averaged tissue contrast at the same time. Rather than 

the usual linear interpolation in the image resampling, the cubic spline interpolation employed in 

the current pipeline can yield slightly better results (Thévenaz, et al., 2000). Another widely used 

template construction strategy is the diffeomorphic framework (Avants, et al., 2009), which can 

guarantee a smooth and differentiable nonlinear transformation during model iterations. We did 

not choose this framework for two reasons. First, a recent study has shown that the employment 

of a fully diffeomorphic algorithm may not automatically guarantee an increase in accuracy 

during template construction (Fonov and Collins, 2018). Second, the cortical folding pattern of 

the brain template could be altered when using different atlas construction methods. To make an 

accurate comparison between the CHN-PD templates and the widely used NIH-PD templates, a 

consistent template construction framework is used. 

Several studies have demonstrated significant differences in overall brain morphology (e.g., 

size, shape and volume) between the Chinese and Western brain templates (Tang, et al., 2010; 

Xie, et al., 2015). Chinese children brain templates are generally shorter, wider, and taller than 

the age-appropriate American templates (Xie, et al., 2015). Our study further extended these 

structural differences to a detailed regional level (Fig. 5). The regions showed obvious 

anatomical differences that were mainly located in the sensorimotor regions and several high-

order function regions such as the dorsal attention and language-related regions (e.g., Broca’s 

and Wernicke’s areas). These regional differences were quite similar to the previous multi-

cultural brain studies in which Chinese adults showed significantly thinner cortical thickness in 

the premotor cortex, inferior frontal gyrus and supramarginal gyrus (Chee, et al., 2011); smaller 

cortical volume; and larger surface areas in the bilateral superior and medial prefrontal and the 

bilateral orbitofrontal gyrus (Tang, et al., 2018) compared with Western. These consistent 

regional differences are reasonable because the high-order functions related to cultural and 

educational factors such as the language abilities have developed prominently in children at 

school age. Our results (Fig. 5) provided a detailed brain map of the potential regional influences 

when adopting a dis-matched children brain template in Chinese pediatric MRI studies. 

However, how these differences affect the assessments on brain development in Chinese 
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pediatric cohorts or act on the estimations of multi-cultural effects on child brain still needs 

further investigation. 

An accurate prediction of the individual brain age is valuable for both typical and atypical 

children development investigations. Individual deviations towards the norm age trajectory of 

brain development may serve as potential markers for brain health and disorders (Cole and 

Franke, 2017; Dosenbach, et al., 2010). Studies have shown that brain structural images can be 

used to predict the individual age with high accuracies for both development (5-18 years old) and 

aging (19-86 years old) populations (Franke, et al., 2012; Franke, et al., 2010). A recent MRI 

study has investigated several methodological factors during image feature generation in order to 

improve the accuracy of age prediction (Monté-Rubio, et al., 2018). Our results further revealed 

that the application of Chinese specific brain templates can help to facilitate the accurate 

prediction of brain age in Chinese pediatrics (Fig. 6). Our prediction accuracy did not reach a 

high value compared with other studies. However, its performance was acceptable since the age 

range of the participants in the current study is relatively narrow (Dataset 2: 6–12 years old; 

Dataset 3: 8–12 years old) and the sample used for training the model is relatively small (Dataset 

2: 114 subjects; Dataset 3: 71 subjects), which may increase the difficulty of prediction (Cui and 

Gong, 2018). Although the aim of the current study was not to seek the highest prediction 

accuracy for age, our results indeed indicated that under the same analysis framework, the 

Chinese pediatric brain template could increase the accurate estimation of age effects in the 

Chinese children population. 

Several issues need be further addressed in our study. First, although the sample size used 

for the template construction has been improved, more subjects would be beneficial for sure. 

Second, future studies could make efforts towards developing novel, cohort-specific brain 

templates using different sub-populations (such as younger children or disease-related atlases) to 

obtain a comprehensive representation of Chinese pediatrics. Third, multi-atlas libraries 

containing multi-modality templates such as white matter atlases based on diffusion weighted 

images should be established to provide abundant brain contrasts. Finally, we anticipated that the 

proposed Chinese children brain atlases can be used for future studies on typical and atypical 

development in Chinese pediatric populations, which may bring a better understanding of the 

development of pediatric population in China. 
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Tables: 

Table 1. Demographic information for the three datasets 

 Age range (years) Number Gender (girl/boy) 

Dataset 1 (PKU site) 6-12 (9.03 ± 1.36) 328 153/175 

Dataset 2 (HLG site) 6-12 (9.06 ± 1.38) 114 47/67 

Dataset 3 (Beijing site from ADHD200)  8-12 (10.26 ± 1.78) 71 46/25 

PKU, Peking University; HLG, HuiLongGuan hospital 
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Table 2. Demographic information for each age subgroup of Dataset 1 

  Age range (years) Number Gender (girl/boy) 

Group 1 6-7 23 14/9 

Group 2 7-8 53 25/28 

Group 3 8-9 99 42/57 

Group 4 9-10 87 42/45 

Group 5 10-11 51 23/28 

Group 6 11-12 34 16/18 
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Table 3. Regions showing high anatomical differences between the CHN-PD and NIH-PD templates 

Regions MSD Regions 1-NCC 

Left angular gyrus, Wernicke’s area 0.224 Right somatosensory cortex 0.022 

Right dorsolateral prefrontal cortex 0.222 Right primary somatosensory cortex 0.02 

Left dorsolateral prefrontal cortex 0.222 Left angular gyrus, Wernicke’s area 0.017 

Right angular gyrus, Wernicke’s area 0.221 Left somatosensory cortex 0.017 

Left somatosensory cortex 0.218 Right angular gyrus, Wernicke’s area 0.016 

Right primary, somatosensory cortex  0.214 Right primary gustatory cortex 0.016 

Right somatosensory cortex 0.212 Left visuo-motor coordination 0.015 

Left supramarginal, Wernicke’s area 0.204 Left orbitofrontal, rostral superior frontal gyrus 0.015 

Left dorsolateral prefrontal cortex 0.204 Right dorsolateral prefrontal cortex 0.014 

Right parstriangularis, Broca’s area 0.203 Left dorsolateral, prefrontal cortex 0.014 

Right dorsolateral, prefrontal cortex 0.201 Left supramarginal, Wernicke’s area 0.014 

Right supramarginal, Wernicke’s area 0.2 Right parstriangularis, Broca’s area 0.014 

Left piriform cortex 0.199 Right orbitofrontal, rostral superior frontal gyrus 0.014 

  Right visuo-motor coordination 0.013 

    Right supramarginal, Wernicke’s area 0.013 

Regions with indexes greater than “mean+std” are shown and listed in descending order in the table. 
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Table 4. The accuracy of age prediction in different regression frameworks by employing two brain 

templates as the normalizing target 

Training/Test sample Dataset 2/Dataset 3 Dataset 3/Dataset 2 

Template CHN-PD NIH-PD CHN-PD NIH-PD 

SVR model     

Raw feature r = 0.39 r = 0.36 r = 0.42 r = 0.35 

Scaling r = 0.40 r = 0.38 r = 0.44 r = 0.38 

Normalization r = 0.38 r = 0.37 r = 0.48 r = 0.43 

RVR model     

Raw feature r = 0.37 r = 0.35 r = 0.46 r = 0.35 

Scaling r = 0.39 r = 0.38 r = 0.47 r = 0.37 

Normalization r = 0.38 r = 0.37 r = 0.48 r = 0.43 

The larger r values were marked in bold in each comparison between the using of CHN-PD and NIN-PD 

brain templates. 
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Figures 

 

Figure 1. The flowchart shows the data preprocessing and template iteration process. The 

individual MRI scan (A) was first corrected for intensity inhomogeneity by using N4 correction 

(B). The brain mask and skull outlines (C) were created using the robust BET estimation from 

the FSL; A hierarchical linear (nine-parameter affine transformation) registration of the 

individual image to the ICBM152 linear template (D) was conducted using the Revised 

BestLinReg algorithm, and the image intensity was scaled to the same range as the target (D). 

The resulting individual images (E) were averaged to generate the initial template (Model 0) and 

used to generate individual transformations (T0) via ANIMAL nonlinear registration. This 

deformation (T0) was further corrected by the average transformation and applied to individual 

images (corrected T0
-1) to create the new averaging approximation. This iterative process 

continued until convergence was reached.  
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Figure 2. The average MRI templates generated in the hierarchical matching process. (A) Color 

scale images show the intensity standard deviation (SD) of each averaged brain model at the 

certain level of step size during the iteration. (B) Gray scale images show the average T1-

weighted brain models at the corresponding steps. (C) The root mean square of the intensity SD 

(upper panel) and the biases in the average deformation (below panel) at each iteration are given 

for the full age range (left panel) and age sub-ranges (right panel) MRI templates. The gray line 

shows the different blurring kernels during the iterations.  
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Figure 3. The detailed slices of the average T1-weighted head/brain templates, the symmetric 

template and the gender-specific templates (female/male) and the slice view of the average T2-

weighted brain templates and the tissue probability templates in Chinese pediatric atlases (6-12 

years old). 
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Figure 4. The detailed slices of the average T1-weighted brain templates (upper panel) and the 

combined tissue class atlas (below panel) of the age sub-groups with one-year intervals. Colors 

in red represents gray matter, green represents white matter, and blue represents CSF. 
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Figure 5.  Regional anatomical differences between the CHN-PD templates and the NIH-PD 

templates. The detailed slices of the age and gender-matched Chinese pediatric brain template 

and the NIH pediatric brain template are given on the left (upper panel: gray matter probability 

map; lower panel: T1-weighted brain template). Distributions of regional anatomical differences 

from the perspective of the mean square difference (MSD) and the normalized cross correlation 

(NCC) are shown in a 3D surface view, with colors from green to yellow coding the index value 

from low to high. Regions with relatively high anatomical differences are mainly located in the 

bilateral angular gyrus and supramarginal gyrus, bilateral dorsolateral prefrontal and inferior 

frontal cortexes, and bilateral somatosensory cortex in both indexes. The visualization of the 3D 

surface view was accomplished using the BrainNet Viewer software (http://www.nitrc. 

org/projects/bnv/) (Xia, et al., 2013). 
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Figure 6. The template effect on the accuracy of age prediction. Pearson correlation coefficients 

between the actual and predicted ages were calculated to represent the prediction accuracy. By 

using the healthy Chinese children in Dataset 2 and Dataset 3 as the training/test samples 

(marked on the bottom of each figure) alternatively (A and B separately), the prediction 

framework employing the Chinese pediatric template (CHN-PD) as the normalization target 

consistently showed a higher prediction accuracy for brain age than the use of the NIH pediatric 

(NIH-PD) template.  
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