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A B S T R A C T

In magnetic resonance (MR) imaging studies of child brain development, structural brain atlases usually serve as
important references for the pediatric population, in which individual images are spatially normalized into a
common or standard stereotactic space. However, the popular existing pediatric brain atlases (e.g., National In-
stitutes of Health pediatric atlases, NIH-PD) are mostly based on MR images obtained from Caucasian populations
and thus are not ideal for the characterization of the brains of Chinese children due to neuroanatomical differ-
ences related to genetic and environmental factors. Here, we use an unbiased template construction algorithm to
create a set of age-specific Chinese pediatric (CHN-PD) atlases based on high-quality T1-and T2-weighted MR
images from 328 cognitively normal Chinese children aged 6–12 years. The CHN-PD brain atlases include
asymmetric and symmetric templates, sex-specific templates and tissue probability templates, and contain mul-
tiple age-specific templates at one-year intervals. A direct comparison of the CHN-PD and NIH-PD atlases reveals
dramatic anatomical differences mainly in the bilateral frontal and parietal regions. After applying the CHN-PD
and NIH-PD atlases to two independent Chinese pediatric datasets (N¼ 114 and N¼ 71), we find that the
CHN-PD atlases result in significantly higher accuracy than the NIH-PD atlases in both predicting “brain age” and
guiding brain tissue segmentation. These results suggest that the CHN-PD brain atlases are necessary for studies of
the typical and atypical development of the Chinese pediatric population. These CHN-PD atlases have been
released on the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) website (https://
www.nitrc.org/projects/chn-pd).
1. Introduction

Modern advances in multi-modal magnetic resonance imaging (MRI)
offer an unprecedented opportunity to explore the structural and func-
tional development of the pediatric brain in vivo. The typical research
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framework is achieved by normalizing individual brain images into a
common or standard stereotactic space using a prior structural atlas, such
as the International Consortium for Brain Mapping (ICBM152) templates
(Evans et al., 2012; Lancaster et al., 2007), as a reference (Ashburner and
Friston, 1999; Collins et al., 1998; Smith et al., 2004). Due to the rapid
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development of the brain, structural atlases specific for young children
have been generated for pediatric MRI investigations (Avants et al., 2015;
Fonov et al., 2011; Luo et al., 2014; Oishi et al., 2019; Richards et al.,
2016; Sanchez et al., 2012; Uchiyama et al., 2013; Wilke et al., 2002; Wu
et al., 2016; Xie et al., 2015) (for a review, see (Dickie et al., 2017)).
Compared with the employment of an adult atlas, adopting age-specific
brain atlases for pediatric participants has been suggested to reduce the
requirement for spatial deformation during image normalization and
maintain a great number of pediatric characteristics of individual brains,
such as a thicker cerebral cortex (Fonov et al., 2011; Yoon et al., 2009).
However, the existing pediatric brain atlases are mostly based on
Caucasian populations (Fonov et al., 2011; Richards et al., 2016; Sanchez
et al., 2012; Wilke et al., 2002, 2008), and typically, the widely used
National Institutes of Health pediatric (NIH-PD) atlases (Fonov et al.,
2011). These existing brain atlases are not ideal for use in Chinese pe-
diatric studies (Richards and Xie, 2015), since Chinese adults and chil-
dren have unique neuroanatomical features that differ from those in
Caucasian people in terms of brain morphology (Bai et al., 2012; Liang
et al., 2015; Tang et al., 2010, 2018; Xie et al., 2015). Furthermore,
different growth trajectories of brain structures have also been reported
between Chinese and North American children (Guo et al., 2007; Xie
et al., 2014). Therefore, creating age-specific atlases based on MR images
of Chinese children is necessary to accurately represent the brains of
Chinese pediatric populations.

During the construction of pediatric brain atlases, there are two
important factors that need to be considered: brain asymmetry and sex
differences. i) Brain asymmetry. The development of a child's brain is
inherently asymmetric in both structure and function (Agcaoglu et al.,
2015; Song et al., 2014; Zhong et al., 2016; Zhou et al., 2013). Asym-
metric atlases which separately represent the left and right hemispheres,
are naturally needed to provide an accurate representation of the chil-
dren brain. Moreover, the degree of brain asymmetry is related to the
specialization of language and motor functions and may underlie phe-
notypes of developmental disorders (Herbert et al., 2002; Shaw et al.,
2009; Toga and Thompson, 2003). Symmetric atlases that treat both
hemispheres equally are also needed for a quantitative description of the
degree of brain asymmetry. Both asymmetric and symmetric brain atlases
have been created for Caucasian pediatric populations (Fonov et al.,
2011; Richards et al., 2016; Sanchez et al., 2012; Wilke et al., 2002,
2008). However, Chinese children have different brain asymmetries that
differ from those in Caucasian children due to genetic and cultural fac-
tors. The visual processing of Chinese characters involves less lateralized
brain function than the visual processing of alphabetic languages (Cao
et al., 2009; Mei et al., 2015; Xue et al., 2005). The developmental dis-
orders accompanied by asymmetric abnormalities, such as dyslexia
(Beaton, 1997; Leonard and Eckert, 2008), are also marked by unique
disruptions in the brains of Chinese children (Siok et al., 2004, 2008).
Moreover, ethnic Chinese adults also exhibited significant morphological
differences in several frontal and parietal regions compared with
Caucasian adults (Chee et al., 2011; Tang et al., 2018). Therefore, the
construction of both asymmetric and symmetric brain atlases is impor-
tant for Chinese pediatric population. ii) Sex differences. Previous studies
have reported sex-specific differences in the brain anatomy of typically
and atypically developing populations (De Bellis et al., 2001; Evans et al.,
2014; Gennatas et al., 2017; Good et al., 2001; Peper et al., 2011).
Developmental disorders, such as attention-deficit/hyperactivity disor-
der (ADHD), are associated with sex-specific prevalence and symptom-
atology (V�ertes and Bullmore, 2015). For an extreme example, sex
chromosome-related disorders occur only in single-sex populations
(Cutter et al., 2006; Murphy et al., 1993). In these situations, sex-specific
atlases can be used to characterize the pediatric brain more accurately
than atlases generated based on a mixed-sex population.

To date, only two structural MRI studies have been performed for the
construction of Chinese pediatric brain atlases (Luo et al., 2014; Xie et al.,
2015). Specifically, Luo et al. (2014) built a single brain template for
pediatrics within a narrow age range of 5–8 years old using structural MR
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images of 53 Chinese children. Xie et al. (2015) generated a series of
pediatric brain templates based on structural MR images of 138 Chinese
children within an age range of 8–16 years at 2-year intervals. However,
the applications of these two sets of brain atlases to Chinese pediatric
studies is still limited due to several methodological issues (we will re-
turn to this issue in the Discussion section). Moreover, previous brain
template studies only revealed the overall differences in the brain
circumference and deformation costs during registration between the use
of Chinese and Caucasian brain atlases (Liang et al., 2015; Tang et al.,
2010; Xie et al., 2015). Considering the spatially distributed regional
brain variations that potentially result from genetic and environmental
effects during development, an examination of the detailed regional
anatomical differences between Chinese and Caucasian pediatric brain
atlases is important.

In the present study, we aimed to create a set of high-quality Chinese
pediatric (CHN-PD) atlases depicting the brains of Chinese school-aged
children from 6 to 12 years old. To achieve this goal, we first collected
high-quality T1-and T2-weighted MR images of a large sample (328
participants) using a state-of-the-art 3T Siemens Prisma scanner. Then,
we employed an unbiased template construction algorithm to generate a
set of CHN-PD brain atlases, including average asymmetric and sym-
metric templates and sex-specific templates. Moreover, we also included
the age-specific brain atlases at one-year intervals, which is a finer
increment than that provided by previous studies. Finally, in a further
exploration of the necessity and applicability of the proposed atlases, we
compared regional anatomical differences between the CHN-PD and
NIH-PD atlases, and further employed two independent Chinese pediatric
datasets (N¼ 114 and N¼ 71) to evaluate the power of the CHN-PD and
NIH-PD atlases in both predicting the “brain age” and guiding brain tis-
sue segmentation.

2. Materials and methods

2.1. Participants

This study included the following three datasets comprising healthy
Chinese children (Table 1): i) a principal dataset (Dataset 1) of 328
participants aged 6–12 years (9.03� 1.36) scanned at Peking University
(PKU), ii) an independent dataset (Dataset 2) of 114 participants aged
6–12 years (9.06� 1.38) scanned at the Beijing HuiLongGuan (HLG)
Hospital in China, and iii) another independent public dataset (Dataset 3)
of 71 Chinese participants aged 8–12 years (10.26� 1.78) obtained from
the Beijing site of the ADHD-200 dataset via the International Neuro-
imaging Data-sharing Initiative (Consortium, 2012; Fair et al., 2012).
Datasets 1 and 2 were selected from the baseline dataset of a pediatric
imaging genetic cohort study that recruited children from dozens of
primary schools in Beijing. Written informed consents was obtained from
the parents/guardians. Comprehensive assessments included
multi-modal MRI scans of the brain, physical health, academic achieve-
ment, cognitive and non-cognitive functions for each child. A
well-validated Chinese standardized cognitive ability test (Dong and Lin,
2011), including attention, visual-spatial, memory and reasoning abili-
ties, was administered by a certified examiner and completed by each
child within 90min. The children whose data were included in this study
were cognitively normal. The exclusion criteria included a history of
neurological/psychiatric disorders, the use of psychoactive drugs, sig-
nificant head injury and physical illness. The intake of any drugs or
caffeine was prohibited on the day of the tests and MRI scans. In Dataset
3, the detailed information of the participants was accessed from the
public data-sharing website of the ADHD-200 project (http://fcon_1000.
projects.nitrc.org/indi/adhd200/). The initial collection of data included
359 participants in Dataset 1, 131 participants in Dataset 2 and 71 par-
ticipants in Dataset 3. All MRI scans included here passed a strict quality
control criteria. The detailed quality control procedure is described
below. i) Individual images were subjected to a careful visual examina-
tion by an experienced radiologist (QW) to exclude incidental
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Table 1
Demographic information of the three datasets.

Age range (years) Number Sex (female/
male)

Dataset 1 (PKU site) 6–12 (9.03� 1.36,
1.75)

328 153/175

Dataset 2 (HLG site) 6–12 (9.06� 1.38,
2.33)

114 47/67

Dataset 3 (Beijing site from
ADHD-200)

8–12 (10.26� 1.78,
2.18)

71 46/25

PKU, Peking University; HLG, HuiLongGuan Hospital.
Age: MEAN� STD, IQR.
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abnormalities, including arachnoid cysts, neuroepithelial cysts and other
intracranial space-occupying lesions. ii) Careful visual inspections with a
scan rating procedure were separately conducted by two experienced
raters (TZ and XL) using a protocol similar to that used in the Human
Connectome Project (Marcus et al., 2013). iii) Images considered to have
a better than fair quality by both raters were retained. This study was
approved by the Ethics Committee of Beijing Normal University. Notably,
Dataset 1 was used to construct the age-specific Chinese MRI atlases, and
Datasets 2 and 3 were used to evaluate the atlas effects in both predicting
Fig. 1. Flowchart of the data preprocessing and template iteration process. Individua
correction (B). The brain mask and skull outlines (C) were created using the robu
transformation) registration of the individual image to the ICBM152 linear templa
intensity was scaled to the same range as the target (D). The resulting individual imag
to further generate individual transformations (T0) using the ANIMAL nonlinear regis
and applied to individual images (corrected T0

�1) to create the new averaging appro
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the brain age and guiding brain tissue segmentation. Table 1 describes
the age and sex distributions of the included samples.
2.2. Image acquisition

For Datasets 1 and 2, high-quality T1-and T2-weighted images were
acquired for each participant using 3T Siemens Prisma scanners (sepa-
rately at Peking University and HuiLongGuan Hospital). The detailed
scanning parameters were as follows: 3D T1-weighted images: repetition
time (TR)¼ 2530ms, echo time (TE)¼ 2.98ms, inversion time
(TI)¼ 1100ms, flip angle (FA)¼ 7�, acquisition matrix¼ 256� 224,
field of view (FOV)¼ 256� 224mm2, number of slices¼ 192, in-plane
resolution¼ 1.0� 1.0mm, slice thickness¼ 1.0mm, bandwidth
(BW)¼ 240 Hz/Px, scan time¼ 5min and 58 s; T2-weighted images: 3D
T2-SPACE sequence, TR¼ 3200ms, TE¼ 564ms, acquisition ma-
trix¼ 320� 320, FOV¼ 224� 224mm2, slices¼ 256, in-plane resolu-
tion¼ 0.7� 0.7mm, slice thickness¼ 0.7mm, BW¼ 744 Hz/Px, and
scan time¼ 8min and 24 s. In Dataset 3, the images were acquired using
a 3T Siemens Trio scanner with the following scanning parameters: T1-
weighted magnetization-prepared rapid acquisition gradient echo se-
quences, TR¼ 2530ms, TE¼ 3.39ms, TI¼ 1100ms, FA¼ 7�, acquisi-
tion matrix¼ 256� 256, FOV¼ 256� 256mm2, 128 slices, slice
thickness¼ 1.33mm, and average¼ 1.
l MRI scans (A) were first corrected for intensity inhomogeneity by using the N4
st BET estimation from the FSL. A hierarchical linear (nine-parameter affine
te (D) was conducted using the Revised BestLinReg algorithm, and the image
es (E) were averaged to generate the initial template (Model 0), which was used
tration. This deformation (T0) was then corrected by the average transformation
ximation. This iterative process continued until convergence was reached.



Table 2
Demographic information of each age subgroup in Dataset 1 (PKU data).

Age range (years) Number Sex (female/male)

Group 1 6–7 23 14/9
Group 2 7–8 53 25/28
Group 3 8–9 99 42/57
Group 4 9–10 87 42/45
Group 5 10–11 51 23/28
Group 6 11–12 34 16/18
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2.3. Construction of pediatric brain atlases

All MRI scans were first preprocessed using the steps described below
(Fig. 1, left panel). i) The intensity inhomogeneity of each scan was
corrected using N4 correction (Tustison et al., 2010). ii) Brain masks
were created using Brain Extraction Tool (BET) estimation and skull
outlines were generated using BET2 (Smith, 2002). iii) A hierarchical
linear registration (nine-parameter affine transformation) of each scan to
the ICBM152 linear brain template was conducted using the Revised
BestLinReg algorithm (Dadar et al., 2018). iv) The image intensity was
scaled to the same range of the template (Nyúl and Udupa, 1999). v)
Individual tissue segmentations were implemented using the
well-validated CIVET 2.1 pipeline to obtain probability maps for the gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF) (http://
www.bic.mni.mcgill.ca/ServicesSoftware/CIVET-2-1-0-Table-of-
Contents).

Next, the unbiased template construction algorithm was adopted to
generate the pediatric brain atlas (Fig. 1, right panel). This procedure was
proposed by Fonov and colleagues (Fonov et al., 2011) based on previous
methods (Guimond et al., 1998, 2001), and has been widely applied to
generate MRI templates, including the ICBM152 brain template, the
NIH-PD brain template and the standard spinal cord template (De Leener
et al., 2018; Fonov et al., 2009, 2011, 2014). Briefly, the preprocessed
images were first averaged as the initial reference target template (Model
Fig. 2. The average MRI templates generated during the hierarchical matching proce
brain model at the specified step sizes during the iterative process. (B) Grayscale ima
The root mean square of the standard deviation of the intensity (upper panel) and the
the MRI templates of the full age range (left panel) and age subranges (right panel)
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0) onto which each T1-weighted image was mapped nonlinearly. The
generated individual transformations were further corrected using the
averaging transformation to remove the bias. The new approximationwas
then generated by applying each corrected transformation to the corre-
sponding individual T1-weighted image and then averaging all images
together. The above process was iterated until convergence was reached.
During each iteration, a nonlinear registration using Automatic Nonlinear
ImageMatching and Anatomical Labeling (ANIMAL) (Collins et al., 1995)
was performedwith an increasinglyfine grid step size and blurring kernel.
We adopted the following hierarchical schedule, which was the same
schedule for theNIH-PDbrain template (Fonov et al., 2011): 4 iterations at
32mm, 4 iterations at 16mm, 4 iterations at 8 mm, 4 iterations at 4 mm,
and 4 iterations at 2mm (the resolution of the deformation field). The
T2-weighted brain atlases and the tissue probability atlases were created
by warping the corresponding individual images using the final defor-
mation field in the construction of the T1-weighted brain atlases and then
by separately generating an average image.

We generated a set of Chinese pediatric atlases, including several
different types based on the PKU dataset (Dataset 1). i) The asymmetric
whole-head and brain-extracted MRI volumes were processed separately
using the model iteration framework to generate both head and brain
templates. ii) The symmetric brain templates were generated by
including left-right flipped scans of each participant at the start and
enforcing symmetric deformation fields in the whole iteration process.
iii) The sex-specific brain templates were generated by using the MRI
volumes of male and female participants separately. iv) We divided all
participating children into six age subgroups with one-year intervals to
generate the brain atlases specific for each age subrange (see Table 2 for
detailed information about the participants in each age subgroup), and
the whole template construction procedures were separately conducted
for each group. Notably, the PKU data (Dataset 1) and our template
construction procedure can also be used to generate customized pediatric
templates according to different age ranges of interests (e.g., 7–9 years
old).
ss. (A) Color scale images show the intensity standard deviation of each averaged
ges show the average T1-weighted brain models at the corresponding steps. (C)
biases in the average deformation (lower panel) at each iteration are shown for

. The gray line shows the different blurring kernels used during the iterations.
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Fig. 3. Detailed slices of the Chinese pediatric atlases at a full age range (6–12 years old). The T1-weighted templates are shown in the upper panel and the tissue
probability atlases are shown in the lower panel. These templates include the asymmetric head/brain templates, asymmetric sex-specific brain templates (F, female; M,
male) and the symmetric brain template. GM, gray matter; WM, white matter; CSF, cerebrospinal fluid. The templates are displayed in the neurological convention.
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2.4. Evaluation of regional anatomical differences between the brain
atlases (CHN-PD vs. NIH-PD)

To estimate the regional anatomical differences between the pro-
posed CHN-PD atlases and the commonly used NIH-PD atlases, we first
extracted a subgroup of PKU children (Dataset 1) with the same age and
59
sex distribution and used the same number of subjects as those in the
group used to generate the NIH-PD template at 7- to 11-year-old. Using
the data from this subgroup, a new Chinese pediatric brain template was
created and used for the subsequent template evaluations to reduce the
effect of sample distribution. Second, the NIH-PD brain template and
tissue probability atlases were coregistered to this new Chinese template



Fig. 4. Detailed slices of the T2-weighted Chinese pediatric atlases at a full age range (6–12 years old). These templates include the asymmetric head/brain templates,
asymmetric sex-specific brain templates (F, female; M, male) and the symmetric brain template. The templates are displayed in the neurological convention.
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with a linear nine-parameter affine transformation to reduce the effect of
the brain circumference.

Instead of the usual visual inspections, we estimated the anatomical
differences between the CHN-PD and NIH-PD brain atlases by calculating
two quantitative image indexes in each Brodmann area. Specifically, the
ICBM152 nonlinear template was first warped into the T1-weighted
CHN-PD brain template using a nonlinear hierarchical ANIMAL regis-
tration (the T1-weighted NIH-PD template was used for a validation, see
Supplemental Materials and Fig. S1). The generated transformation was
applied to the Brodmann atlas to obtain the adjusted brain areas. Next,
for each adjusted area, we calculated the mean square difference (MSD)
(Holden et al., 2000) in the gray matter probability, which assesses the
absolute differences in the gray matter morphology between the two
brain atlases, and the normalized cross correlation (NCC) (Zhao et al.,
2006), which reflects the spatial similarity of the anatomical structures
between the two brain atlases. The details of these two indexes are
described in the Supplemental Materials.

2.5. Evaluation of the atlases effects (CHN-PD vs. NIH-PD) on the
accuracy of brain age prediction

To determine whether the proposed CHN-PD atlases have advantages
over Caucasian pediatric brain atlases in studies regarding Chinese
children, we performed a comparative analysis to evaluate their predic-
tion power for brain age. Here, we employed the CHN-PD brain template
that were generated using Dataset 1 subsamples with matched age and
sex as those of the NIH-PD template at 7–11 years old (see above section).
To reduce the overfitting effect, we used two independent datasets
(Dataset 2 and Dataset 3) in training and testing the brain age prediction
model in turns. The main process is described below. First, Dataset 2 was
used as the training sample, and Dataset 3 was used as the testing sample.
60
For each subject, the T1-weighted image was separately normalized to
the new Chinese pediatric template and to the NIH-PD template using the
hierarchical ANIMAL nonlinear registration. Second, the Brodmannmask
was warped separately into the two brain templates using a nonlinear
transformation that was obtained using the registration between the
ICBM152 template and the CHN-PD/NIH-PD template to locate feature
voxels for the prediction model. Next, we implemented the two most
widely used machine-learning regression strategies (Cui and Gong, 2018;
Drucker et al., 1997; Tipping, 2001) to predict individual age based on
the normalized T1-weighted images. The first strategy was a
support-vector regression (SVR) model with a linear kernel function
(Drucker et al., 1997). Common settings, C¼ 1 and epsilon¼ 0.001, were
adopted. The second strategy was the relevance vector regression (RVR),
which is a Bayesian-formulated regression framework (Tipping, 2001).
After model training and testing, the Pearson correlation coefficient be-
tween the actual and predicted ages was calculated to assess the pre-
diction accuracy of the model. Finally, permutation tests were
implemented to estimate whether the obtained prediction accuracies
were significantly higher than a random level (Cole and Franke, 2017;
Dosenbach et al., 2010). Specifically, the ages of the training samples
were randomly permutated for each prediction model. The p value of the
prediction accuracy was obtained by summing the number of permuta-
tions that showed a higher correlation coefficient than the actual value of
the real model and then divided by the total number of permutations
(here we used 1000 times). We applied three feature preprocessing ap-
proaches, including the raw features (untreated), scaling and normali-
zation, after which we repeated the whole prediction procedure to
evaluate the effects of the preprocessing methods. Finally, we exchanged
the training and test samples to perform a cross-validation of the pre-
diction. For the code implementation, the LIBSVM toolbox was used in
the SVR model (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/


Fig. 5. Detailed slices of the average T1-weighted brain templates (upper panel) and the combined tissue probability atlases (lower panel) of the age subgroups at one-
year intervals. Red represents the gray matter, green represents the white matter, and blue represents cerebrospinal fluid. The brain templates are displayed in the
neurological convention.
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and Lin, 2011), and the PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.uk/
pronto/) was used in the RVR model (Schrouff et al., 2013).

We further examined the regional contributions to the prediction
model and their differences between the CHN-PD and NIH-PD templates.
The voxels with a nonzero regression coefficient/weight in the prediction
models trained using both datasets (Datasets 2 and 3) were considered
the contributing voxels. The average absolute weight across the voxels in
each region in the Brodmann atlas was calculated to represent its
importance in the age prediction (Cui and Gong, 2018; Dosenbach et al.,
2010; Erus et al., 2014; Siegel et al., 2016). To estimate the regional
difference in the contributing weights between the CHN-PD and NIH-PD
brain templates, a nonparametric Wilcoxon rank sum test was performed
to compare the voxel-wise feature weights of each Brodmann area be-
tween these two templates. For each regional test, a Bonferroni-corrected
significance level of p< 0.05 was adopted for multiple comparisons
61
(here, p< 0.05/82, where 82 represents the number of regions in the
Brodmann atlas).
2.6. Evaluation of the atlases effects (CHN-PD vs. NIH-PD) on the tissue
segmentation accuracy

To further assess the advantages of the proposed CHN-PD atlases in
segmenting the brain tissues on Chinese pediatric data, we conducted a
comparison (Luo et al., 2014) of the tissue segmentation accuracy be-
tween the proposed CHN-PD atlases and the existing NIH-PD atlases
using two independent samples (Dataset 2 and Dataset 3). First, we
performed an automatic segmentation of the individual T1-weighted
images without any prior information (Zhang et al., 2001). These
individual-based probabilistic tissue maps of GM,WM and CSF were used
as a reference for the subsequent comparison. Then, the segmentation

http://www.mlnl.cs.ucl.ac.uk/pronto/
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Fig. 6. Regional anatomical differences between the CHN-PD and NIH-PD atlases. Detailed slices of the Chinese pediatric brain atlases and the NIH pediatric brain
atlases are shown on the upper panel (A: gray matter probability map; B: T1-weighted brain atlases). Distributions of regional anatomical differences as indicated by
the mean square difference (MSD, panel A) and 1 - normalized cross correlation (1 - NCC, panel B) are shown in a 3D surface view with colors from green to yellow
representing index values from low to high (lower panel). According to both indexes, the regions with relatively large anatomical differences are located bilaterally in
the angular gyri and supramarginal gyri (parts of Wernicke's area), the somatosensory cortices, the dorsolateral prefrontal regions, the inferior frontal gyri (including
Broca's area) and the temporopolar cortices. Notably, the CHN-PD atlases were generated using MRI data from Dataset 1 with a group matched to the age (7–11 years)
and sex of the group used to generate the NIH-PD atlases. The visualizations of the 3D surface views were generated using BrainNet Viewer software (http://www.
nitrc.org/projects/bnv/) (Xia et al., 2013).
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was implemented using a prior atlas by separately employing the
CHN-PD and NIH-PD brain templates. A range of tissue probability
thresholds (p> 0.1 to 0.25, at 0.05 intervals) were applied to obtain the
final tissue classification. Next, we calculated the Dice coefficient (Dice,
1945) between the individual-based and the Chinese and Caucasian
atlas-based tissue classifications. A paired t-test was performed on the
Dice coefficients to estimate whether the proposed CHN-PD atlas could
achieve significant improvements compared with the NIH-PD atlas. A
detailed procedure was described in the Supplemental Materials.

2.7. Evaluation of regional anatomical differences between the brain
atlases for each age-subgroup and between the sex-specific brain atlases

Similar comparisons were also conducted between the age-specific
templates at one-year intervals and between the sex-specific atlases to
estimate the regional anatomical differences. Specifically, for the com-
parisons of age-specific templates, each pair of T1-weighted brain tem-
plates in the adjacent age subgroups were initially classified into one
group. Then, the Brodmann atlas was nonlinearly warped into the
younger age brain template for each group using the ICBM152 nonlinear
template as an intermediary to divide the brain into 82 regions. Next, the
older brain template and corresponding tissue probabilistic atlas were
transformed into the younger template using a nine-parameter affine
registration to perform an alignment. For each Brodmann area, the 1-
NCC value between each pair of templates was calculated. Similarly,
for the comparisons of sex-specific templates, the Brodmann atlas was
warped into the female brain template to obtain the regional parcella-
tion, and the male brain template was aligned to the female brain tem-
plate. Then, the anatomical differences between two templates were
assessed for each Brodmann area.
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2.8. Comparisons with the diffeomorphic template construction framework

For the CHN-PD brain atlases, we used a well-established ANIMAL
registration algorithm (Fonov et al., 2011). One of the most distinctive
brain template construction approaches is the diffeomorphic framework
(Avants et al., 2011), which guarantees the invertibility and smoothness
of the generating transforms during nonlinear registration. We re-created
the T1-weighted brain templates for each age subgroup using this
framework (implemented in the Advanced Normalization Tools, ANTs
pipeline, Avants et al. (2009)) based on the same samples used for the
current CHN-PD templates. The hierarchical scheme with 3 iterations at
50� 90� 20 registration steps (Avants et al., 2011; Fonov and Collins,
2018) was adopted during the construction process. We used a sharpness
index to evaluate whether the use of diffeomorphic registration frame-
work could improve the quality of our proposed templates. A detailed
description of the procedure is provided in the Supplemental Materials.

3. Results

3.1. Convergence of the template construction algorithm in the Chinese
pediatric atlases

In this study, all types of MRI templates are constructed based on PKU
dataset (Dataset 1) through the hierarchical model iteration processes,
and qualitative progression is observed along with the iterations. We
represent a detailed view of the intermediate models during the con-
struction of the T1 weighted brain template over the full age range (6–12
years old). Fig. 2A illustrates the voxel-wise standard deviation map
across the individual scans at different iterations and resolution steps,
and Fig. 2B illustrates the corresponding averaged T1-weighted models.

http://www.nitrc.org/projects/bnv/
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Table 3
Regions showing large anatomical differences between the CHN-PD and NIH-PD atlases.

Brodmann area MSD Brodmann area 1-NCC

Left angular gyrus, Wernicke's area (BA 39) 0.244 Right somatosensory association cortex (BA 5) 0.022
Right angular gyrus, Wernicke's area (BA 39) 0.227 Right primary somatosensory cortex (BA 1) 0.019
Right dorsolateral prefrontal cortex (BA 46) 0.224 Left somatosensory cortex (BA 5) 0.018
Left somatosensory cortex (BA 5) 0.224 Right temporopolar (BA 38) 0.017
Left supramarginal gyrus, Wernicke's area (BA 40) 0.223 Left angular gyrus, Wernicke's area (BA 39) 0.017
Left dorsolateral prefrontal cortex (BA 9) 0.221 Left dorsolateral, prefrontal cortex (BA 9) 0.016
Right somatosensory cortex (BA 5) 0.213 Right pars triangularis, Broca's area (BA 45) 0.015
Right temporopolar (BA 38) 0.209 Left supramarginal gyrus, Wernicke's area (BA 40) 0.015
Right primary somatosensory cortex (BA 1) 0.205 Right dorsolateral prefrontal cortex (BA 46) 0.014
Right dorsolateral prefrontal cortex (BA 9) 0.202 Left pars triangularis, Broca's area (BA 45) 0.014
Left dorsolateral prefrontal cortex (BA 46) 0.201 Right visuo-motor coordination (BA 7) 0.014
Right supramarginal gyrus, Wernicke's area (BA 40) 0.200 Right angular gyrus, Wernicke's area (BA 39) 0.014
Right parstriangularis, Broca's area (BA 45) 0.195 Left visuo-motor coordination (BA 7) 0.014

Left pars opercularis, Broca's area 0.014
Left temporopolar (BA 38) 0.014

Regions with indexes greater than the mean plus one standard deviation are listed in descending order in the table.
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The standard deviation at the voxel level is reduced in each block of four
iterations, and the anatomical details gradually become distinct around
the neighboring voxels, showing a successful convergence (Fig. 2A and
B). The standard T1-weighted brain template is generated at the 20th
iteration. The root mean square (RMS) of the intensity standard deviation
and biases of the average deformation in each iteration step are plotted
for all types of MRI templates (Fig. 2C). As the procedure advanced, the
RMS progressively decrease across iterations for the averaging models,
indicating that the optimization procedure reaches a minimum. Similar
convergence processes are found for the averaged head/brain, symmetric,
and sex-specific templates (Fig. 2C, left panel) and for each age subgroup
template (Fig. 2C, right panel).
3.2. Averaged structural MRI atlases for Chinese pediatric brains (CHN-
PD atlases)

We generated the T1- (Fig. 3) and T2-weighted (Fig. 4) Chinese pe-
diatric atlases over the full age range (6–12 years). These figures show
axial, sagittal and coronal slices of the averaged asymmetric head/brain
templates, asymmetric sex-specific brain templates and symmetric brain
templates. Additionally, Fig. 3 also shows the tissue probability atlases of
GM, WM and CSF. In each slice, these templates portray clear anatomical
structures in the cerebral and subcortical regions, cerebellum and
brainstem. Fig. 5 shows detailed age-specific templates at one-year in-
tervals, including both the T1-weighted brain templates and corre-
sponding tissue probability atlases. A visual inspection indicates similar
morphological structures in the brain gyri and sulci across these age-
specific templates, and slight anatomical differences in the peripheral
GM/WM junctions. All templates are publicly available in the Neuro-
imaging Informatics Technology Initiative (NIfTI) format in the CHN-PD
Table 4
Accuracy of the age predictions in different regression frameworks using the
CHN-PD and NIH-PD brain atlases as the normalization targets.

Training/Test sample Dataset 2/Dataset 3 Dataset 3/Dataset 2

Template CHN-PD NIH-PD CHN-PD NIH-PD

SVR model
Raw feature r¼ 0.39 r¼ 0.36 r¼ 0.42 r¼ 0.35
Scaling r¼ 0.40 r¼ 0.38 r¼ 0.44 r¼ 0.38
Normalization r¼ 0.38 r¼ 0.37 r¼ 0.48 r¼ 0.43
RVR model
Raw feature r¼ 0.37 r¼ 0.35 r¼ 0.46 r¼ 0.35
Scaling r¼ 0.39 r¼ 0.38 r¼ 0.47 r¼ 0.37
Normalization r¼ 0.38 r¼ 0.37 r¼ 0.48 r¼ 0.43

In each comparison between the prediction models adopting the CHN-PD and
NIH-PD brain templates, the larger r value is shown in bold. All correlations were
significantly greater than a random level (p< 0.001, permutation tests).
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atlas project on the Neuroimaging Tools and Resources Collaboratory
(NITRC) website (https://www.nitrc.org/projects/chn-pd/).

3.3. Regional anatomical differences between the CHN-PD and NIH-PD
atlases

Regarding the absolute differences in the GM probability maps be-
tween the CHN-PD and NIH-PD atlases, the regions showing relatively
large anatomical differences are located bilaterally in the angular gyri
and supramarginal gyri (parts of Wernicke's area), the somatosensory
cortices, the dorsolateral prefrontal cortices, the inferior frontal gyri
(including Broca's area) and the temporopolar cortices (Fig. 6A, and
Table 3). Regarding the spatial similarity across voxels, we show a
consistent distribution of anatomical differences in the aforementioned
regions between the CHN-PD and NIH-PD atlases (Fig. 6B, and Table 3).

3.4. The CHN-PD atlases display a higher prediction power for the brain
age of Chinese pediatric data than the NIH-PD atlases

The results for the predicted brain age are presented in Table 4 and
Fig. 7. All correlations are significantly higher than those expected by
chance (p< 0.001, permutation tests), suggesting that brain age can be
successfully predicted by structural features of the individual brain.
Notably, the prediction power values are generally higher when using the
CHN-PD for image normalization than when using the NIH-PD atlases,
regardless of the feature selection and prediction models. The same
conclusion is drawn when the training and test samples are exchanged to
cross-validate the prediction. According to the statistical analysis, the use
of the CHN-PD atlas produces a significantly higher prediction accuracy
of brain age than using the NIH-PD atlas across all feature preprocessing
operations and regression models (p¼ 0.005, paired t-test).

We select the framework showing the highest prediction accuracy,
i.e., the SVR model with the normalized feature preprocessing step
(r¼ 0.48, Table 4), to show the regional contributions to the predicted
age. The regions that are important for predicting age are mainly located
in the bilateral entorhinal cortex, perirhinal cortex, somatosensory gyrus
and dorsolateral frontal cortex in both the Chinese and NIH pediatric
brain templates (Fig. 8A and B). Regarding the differences in the weights
of the contributing voxels between the two templates, 30 of 82 regions
(p< 0.05 after the Bonferroni correction) show significantly different
weights for the brain age prediction (Fig. 8C and Table 5). Specifically,
compared with the use of the NIH-PD, the use of the CHN-PD reveals
significantly greater contributions for the following areas: the bilateral
angular gyri (part of Wernicke's area), the right supramarginal gyrus
(part of Wernicke's area), the right dorsolateral prefrontal cortex, the left
inferior frontal gyrus (including Broca's area) and the somatosensory
cortices. In contrast, compared with the use of the CHN-PD, regions
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Fig. 7. Effect of the brain atlas choice on the
accuracy of the age prediction. Pearson's corre-
lation coefficients between the actual and pre-
dicted ages were calculated to represent the
prediction accuracy. Using the Chinese children
in Datasets 2 and 3 as the training/test samples
(marked on the bottom of each figure) in alter-
nation (A and B), the prediction framework
employing the Chinese pediatric (CHN-PD)
atlases as the normalization target consistently
showed a higher accuracy in predicting brain age
than the NIH pediatric (NIH-PD) atlases. This plot
shows only the SVR model with the scaling
feature preprocessing step (A) and the normali-
zation step (B), which obtained the highest pre-
diction accuracy for the corresponding training/
test samples. All correlations were significantly
greater than the random level (p< 0.001, per-
mutation tests). Notably, the CHN-PD atlases
were generated using the children in Dataset 1
with a group matched to the age (7–11 years) and
sex of the group used to generate the NIH-PD
atlases.

Fig. 8. Regional distribution of the weights of the contributing voxels and their differences between the prediction models applying the CHN-PD and the NIH-PD brain
atlases. The average voxel-wise contribution weights of each region in the Brodmann atlas are illustrated separately for the CHN-PD (A) and NIH-PD atlases (B) in color
from red to yellow. The regions that showed significant differences in contributing weights in age prediction between the two atlases are shown in 3D surface views
(C). Regions colored in red indicate greater contribution weights are obtained using the CHN-PD atlases than the NIH-PD atlases as the normalization target, while
regions colored in blue indicate the opposite result. Notably, the CHN-PD atlases were generated using MRI data from Dataset 1 with a group matched to the age (7–11
years) and sex of the group used to generate the NIH-PD atlases. The visualizations of the 3D surface views were generated using the BrainNet Viewer software (http://
www.nitrc.org/projects/bnv/) (Xia et al., 2013).
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including the lateral temporal cortex, the right dorsolateral frontal cortex
and the bilateral frontal eye fields show significantly greater regional
contributions in the model employing the NIH-PD atlas.
3.5. The CHN-PD atlases produce a higher tissue segmentation accuracy
for Chinese pediatric data than NIH-PD atlases

In both Dataset 2 and Dataset 3, the CHN-PD atlases show a signifi-
cantly higher accuracy than the NIH-PD atlases in the classification of
WM, GM and CSF with probability thresholds ranging from 0.1 to 0.25
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(all p-values< 0.001, Fig. 9).
3.6. Comparison with the template sharpness of the diffeomorphic
framework

Fig. 10 shows an axial slice of the template for each age-subgroup at
one-year intervals using both the ANIMAL registration and ANTs pipe-
line. As shown in the right panel, the ANIMAL framework exhibits greater
sharpness than the diffeomorphic registration at each age interval.
Similar results are obtained using the default iteration parameter in ANTs
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Table 5
Regional differences in the weights of contributing voxels between the CHN-PD and NIH-PD atlases.

Brodmann area Difference in weights p-value

(CHN-PD>NIH-PD)

Right angular gyrus, Wernicke's area (BA 39) 0.010 <10�9

Left somatosensory association cortex (BA 5) 0.009 <10�9

Right premotor cortex and supplementary motor cortex (BA 6) 0.004 <10�9

Right dorsolateral prefrontal cortex (BA 46) 0.005 <10�9

Left angular gyrus, Wernicke's area (BA 39) 0.005 <10�9

Right supramarginal gyrus, Wernicke's area (BA 40) 0.004 <10�9

Right inferior temporal gyrus (BA 20) 0.002 <10�9

Left associative visual cortex (V3, V4, V5) (BA 19) 0.002 <10�9

Right primary auditory cortex (BA 42) 0.007 1.7� 10�9

Right primary visual cortex (V1) (BA 17) 0.004 1.7� 10�8

Right middle temporal gyrus (BA 21) 0.003 2.9� 10�7

Left orbitofrontal area (BA 11) 0.003 3.4� 10�7

Left retrosubicular area (BA 48) 0.002 6.8� 10�7

Right dorsal anterior cingulate cortex (BA 32) 0.004 2.5� 10�6

Left visuo-motor coordination (BA 7) 0.004 3.3� 10�5

Left pars triangularis, Broca's area (BA 45) 0.003 4.4� 10�5

Left temporopolar (BA 38) 0.002 4.8� 10�5

Right primary auditory cortex (BA 41) 0.003 4.9� 10�5

Right superior temporal gyrus, Wernicke's area (BA 22) 0.002 5.2� 10�5

Brodmann area Difference in weights p-value

(CHN-PD<NIH-PD)

Left middle temporal gyrus (BA 21) �0.010 <10�9

Left fusiform gyrus (BA 37) �0.006 <10�9

Right frontal eye fields (BA 8) �0.008 <10�9

Left primary motor cortex (BA 4) �0.006 <10�9

Right dorsolateral prefrontal cortex (BA 9) �0.006 <10�9

Left frontal eye fields (BA 8) �0.005 <10�9

Right associative visual cortex (V3, V4, V5) (BA 19) �0.003 <10�9

Right fusiform gyrus (BA 37) �0.002 3.5� 10�9

Right pars opercularis, Broca's area (BA 44) �0.003 1.8� 10�5

Right primary somatosensory cortex (BA 1) �0.006 2.8� 10�5

Left piriform cortex (BA 27) �0.009 3.1� 10�5

The framework showing the highest prediction accuracy, namely, the SVR model with the normalized feature preprocessing step, was used to show the regional
contributions to the age prediction.
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(See Fig. S2).

3.7. Regional anatomical differences across age-subgroup and sex-specific
atlases

Regarding the age-specific atlases at one-year intervals, the structural
differences between each pair of brain templates with adjacent one-year
intervals are mainly located in the bilateral dorsolateral and medial
frontal and parietal cortices (Fig. 11). The bilateral inferior frontal gyri
show relatively large anatomical differences between the early 6- to 7-
year old and 7- to 8-year-old brains (Fig. 11). Regarding the sex-
specific templates, the regions showing the greatest anatomical differ-
ence are mainly located in the right superior frontal gyrus, the bilateral
angular gyri and the bilateral supramarginal gyri (parts of Wernicke's
area) (Fig. 12).

4. Discussion

In the current study, we constructed a set of Chinese pediatric atlases
(CHN-PD) using a large sample of high-quality MR images of Chinese
children aged 6–12 years. The CHN-PD atlases include asymmetric and
symmetric brain templates, sex-specific brain templates and age-specific
brain templates at one-year intervals. The proposed Chinese pediatric
atlases showed obvious anatomical differences in the lateral frontal and
parietal cortex regions as compared to the NIH-PD atlases. In the Chinese
pediatric datasets, both the power of age prediction and the accuracy of
tissue segmentation were higher when the CHN-PD atlases were used as
the normalization target than when the NIH-PD atlases are employed.

Two previous structural MRI studies have attempted to build Chinese
pediatric brain atlases (Luo et al., 2014; Xie et al., 2015). However,
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several major differences exist between our work and these two earlier
studies. First, the pediatric brain atlases proposed here employed
high-quality MR images with high signal-to-noise ratios obtained using
advanced state-of-the-art 3.0-T Prisma scanners; in contrast, the two
previous studies used brain MR images obtained with a 1.5-T MRI
scanner (Luo et al., 2014) and a 3.0-T Trio scanner (Xie et al., 2015).
Second, our atlases include a larger sample size (N¼ 328) than the two
previous studies (N¼ 53 and 138, respectively), enabling us to generate
pediatric MRI templates at refined one-year intervals. This refinement is
important for obtaining an accurate description of the elaborate growth
trajectories (e.g., within a one-year period) of children's brains during a
phase of rapid and dynamic structural and functional changes (Cao et al.,
2016; Giedd et al., 1999; Lebel and Beaulieu, 2011; Levman et al., 2017;
Sowell et al., 2003; Walhovd et al., 2017; Zhao et al., 2015). Third, we
provide the brain atlases for the whole age range from 6 to 12 years
instead of the separate age subgroup templates shown in two previous
studies. These atlases are important for future studies designed to predict
the “brain age” of Chinese children. Fourth, in contrast to the rigid
transformation used in the two previous studies (Luo et al., 2014; Xie
et al., 2015), we conducted a nine-parameter affine transformation of the
individual images to the initial ICBM152 linear brain target, which
reduced the differences in the circumference between the Chinese and
Caucasian brains while maintaining compatible regional locations in the
Chinese pediatric templates. This approach may benefit future compar-
ative studies investigating the development of brain regions in children
from multicultural backgrounds. Fifth, due to the consistent coordinate
system of our atlases based on the Montreal Neurological Institute space,
the application of our templates is convenient and generalizable. Finally,
our brain atlases include symmetric and sex-specific types, which are not
included in the two previous studies (Luo et al., 2014; Xie et al., 2015).



Fig. 9. The tissue segmentation accuracy of the CHN-PD and NIH-PD atlases for Chinese children. The Dice coefficient between each individual-based (using the FAST
algorithm without any prior) and two atlas-based segmentations were calculated using two independent datasets. The CHN-PD brain atlases showed a significantly
higher overlay with the individual segmentations (as the reference) than the NIH-PD atlases in the classification of WM, GM and CSF with tissue probability thresholds
ranging from 0.1 to 0.25 (*, p-value < 0.001). Similar results were obtained from both the HLG dataset (A, Dataset 2) and the healthy ADHD-200 samples (B, Dataset
3). Notably, the CHN-PD atlases were generated using MRI data from Dataset 1 with a group matched to the age (7–11 years) and sex of the group used to generate the
NIH-PD template.
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Currently, several different strategies have been used to construct
brain atlases. We used an unbiased model construction algorithm for the
construction of the CHN-PD atlases. This algorithm has been widely used
to create MRI templates (De Leener et al., 2018; Fonov et al., 2009, 2011,
2014), which yields abundant anatomical features while maintaining
clear tissue contrasts for the templates. Specifically, this iterative con-
struction algorithm captures both the average intensity and the average
shape of the brain at a population level. Thus, the use of this approach in
combination with our high-quality MRI data from Chinese children is
flexible for generating templates for customized age ranges and types.
Considering the heterogeneous development of brain regions (Gogtay
Fig. 10. Differences in the sharpness of the age-subgroup templates between the AN
each age-subgroup at one-year intervals generated using the ANIMAL registration
templates in each age interval using our ANIMAL (for details, see Methods) and ANTs
steps was employed during the construction process using the ANTs pipeline (Avant
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and Thompson, 2010; Paus, 2005; Toga et al., 2006), our templates with
distinct anatomical boundaries and fine details in flexible age ranges may
facilitate the description of the accurate spatiotemporal sequence of the
brain development of Chinese pediatric population. Another widely used
template construction strategy is based on the diffeomorphic framework
(Avants et al., 2011). This framework guarantees a smooth and differ-
entiable nonlinear transformation during model iterations. The applica-
tion of the diffeomorphic framework did not improve the template
sharpness in the CHN-PD atlases. These results are consistent with a
recent study showing that the use of a strictly diffeomorphic registration
does not result in improved sharpness when constructing the adult
IMAL registration and ANTs pipeline. Left panel: Axial views of templates from
and ANTs pipeline (diffeomorphic registration). Right panel: The sharpness of
frameworks. A hierarchical scheme with 3 iterations at 50� 90� 20 registration
s et al., 2011).



Fig. 11. Regional anatomical differences between two T1-weighted brain templates in each adjacent age subgroup of the CHN-PD atlases. Distributions of regional
anatomical differences as indicated by the 1 - normalized cross correlation (NCC) are shown in a 3D surface view with colors ranging from green to yellow representing
low to high index values. According to both indexes, the regions with relatively large anatomical differences are mainly located in the bilateral dorsolateral and medial
frontal and parietal cortex regions. The bilateral inferior frontal areas showed relatively large anatomical differences between the early 6- to 7-year old group and
other age subgroups. The visualizations of the 3D surface views were generated using BrainNet Viewer software (http://www.nitrc.org/projects/bnv/) (Xia
et al., 2013).
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templates (Fonov and Collins, 2018). Notably, in the present study, the
distribution of the samples varied across the different age subgroups,
which may affect the consistency of the age-specific templates. However,
the number of children per group was not identical because we sought to
achieve the maximum utilization of the samples. Although a visual ex-
amination did not reveal obvious differences in these age-specific brain
atlases (Fig. 5), future studies should consider algorithms, such as
adaptive kernel regression (Schuh et al., 2018; Serag et al., 2012), to
control for the effect of subject numbers in the different age subgroups.

Several studies have reported significant differences in overall brain
morphology (e.g., size, shape and volume) between Chinese and
Caucasian brain templates (Tang et al., 2010; Xie et al., 2015). Chinese
pediatric brain templates are generally shorter in length and greater in
width and height than age-specific American templates (Xie et al., 2015).
Our study further extended these structural differences to a detailed
regional level (Fig. 6). The regions that showed obvious anatomical dif-
ferences were mainly located in the bilateral frontal and parietal regions.
These regional differences were consistent with the differences reported
in previousmulticultural studies in which ethnic Chinese adults showed a
significantly thinner cortical thickness in the inferior frontal gyrus and
supramarginal gyrus (Chee et al., 2011), smaller cortical volume, and
larger surface areas in the bilateral superior and medial prefrontal and
the bilateral orbitofrontal gyrus (Tang et al., 2018) than Caucasian
adults. These consistent results are reasonable since the neuroanatomical
development of these areas begins at approximately the time of birth and
closely resembles adult levels by the adolescent period (Casey et al.,
2005; Thompson and Nelson, 2001). Furthermore, these regions consis-
tently showed different contribution weights in the prediction of brain
age between the use of Chinese and Caucasian pediatric brain atlases.
The lower prediction accuracy obtained using a mismatched brain tem-
plate may be driven by the regional differences between the brain tem-
plates. Thus, we conclude that the regional structural features captured
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by the Chinese pediatric atlases may be more representative of the
developmental curves of the brains of Chinese children.

Recently, an increasing number of pediatric studies have used the
innovative concept of “brain age” to predict the extent of brain matura-
tion (Ball et al., 2017; Brown et al., 2012; Cao et al., 2017; Cole et al.,
2017; Dosenbach et al., 2010; Franke et al., 2012; Kwak et al., 2018;
Madan and Kensinger, 2018; Zhao et al., 2015, 2019). The predicted age
is considered the “brain age” because this value is obtained from a
typically developing population and thought to provide a normative
maturation curve for pediatric brains with cognitive (Erus et al., 2014)
and heritable underlays (Cole and Franke, 2017). Individual deviations
from the normal age trajectory of brain development may serve as po-
tential markers of healthy and diseased brains (Cole and Franke, 2017;
Dosenbach et al., 2010). An accurate prediction of the brain age is
valuable for investigating both typically and atypically developing chil-
dren. A recent MRI study investigated several methodological factors
during image feature generation to improve the accuracy of age predic-
tion (Mont�e-Rubio et al., 2018). As shown in the present study, the
application of Chinese-specific brain templates facilitates the accurate
prediction of brain age for the Chinese pediatric population, which is
important for future studies.

Several issues need to be further addressed. First, although the sample
size used for the template construction was improved, more subjects
would certainly be beneficial. Second, we used the cross-subject intensity
averaging method to generate the population shape of brain atlases,
which is insufficient to preserve the topology of certain brain structures.
Previous studies have proposed the use of a Bayesian approach on a
diffeomorphic random orbit model to address this issue (Zhang et al.,
2014), which needs to be considered further in the future. Third, the
proposed CHN-PD atlases were generated using the structural MRI data
collected using a 3.0-T MRI scanner. Future studies should determine
whether the proposed atlases are appropriate for the children data
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Fig. 12. Regional anatomical differences be-
tween the female and male templates of the CHN-
PD atlases. Detailed slice of the Chinese female
pediatric brain template and the male pediatric
brain template are shown on the upper panel.
Distributions of regional anatomical differences
as indicated by the 1 - normalized cross correla-
tion (NCC) are shown in a 3D surface view with
colors ranging from green to yellow representing
low to high index values. The regions with rela-
tively large anatomical differences are mainly
located in the right superior frontal gyrus and the
bilateral angular and supramarginal gyri (parts of
Wernicke's area). The visualizations of the 3D
surface views were generated using BrainNet
Viewer software (http://www.nitrc.org/projects/
bnv/) (Xia et al., 2013).
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collected using 1.5-T MRI scanners. Fourth, the development of longi-
tudinal or cohort-specific brain atlases using different subpopulations
(such as baby brain atlases or disease-related brain atlases) will be
important to obtain a comprehensive representation of Chinese children.
Fifth, multi-atlas libraries containing templates from other modalities,
such as white matter atlases based on diffusion-weighted images, should
be established to provide a variety of brain contrasts. Finally, we antic-
ipate that the proposed CHN-PD atlases will be used in future studies
investigating the typical and atypical development of Chinese pediatric
populations.
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