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Anxious individuals tend to make pessimistic judgments in decision making under uncertainty. While this phe-
nomenon is commonly attributed to risk aversion, loss aversion is a critical but often overlooked factor. In this
study, we simultaneously examined risk aversion and loss aversion during decision making in high and low trait
anxious individuals in a variable gain/loss gambling task during functional magnetic resonance imaging.
Although high relative to low anxious individuals showed significant increased risk aversive behavior reflected by
decreased overall gamble decisions, there was no group difference in subjective aversion to risk. Instead, loss

aversion rather than risk aversion dominantly contributed to predict behavioral decisions, which was associated
with attenuated functional connectivity between the amygdala-based emotional system and the prefrontal control
regions. Our findings suggest a dominant role of loss aversion in maladaptive risk assessment of anxious in-
dividuals, underpinned by disorganization of emotion-related and cognitive-control-related brain networks.

1. Introduction

Human decision making under uncertainty is always accompanied by
risk. While avoiding potential risk can be functionally adaptive, excessive
risk aversion may impair daily functions as has been noted for individuals
prone to anxiety (Hartley and Phelps, 2012). Unfortunately, risk aversion
is often confounded with loss aversion in decision making tasks, limiting
our ability to determine the primary motivation for such behavior
(Phelps et al., 2014). Whereas risk aversion can be defined as a general
aversion to the uncertainty or variance in outcome regardless of whether
the outcome is a potential gain or loss (De Martino et al., 2010), loss

aversion refers to a tendency to overweight losses relative to equivalent
gains regardless of the level of risk (Kahneman and Tversky, 1979). When
risk is accompanied by a potential loss, individuals with high loss aver-
sion may appear to be risk averse. Therefore, differentiating aversion to
loss from aversion to risk in decision making is pivotal to understanding
avoidance behavior in psychopathology, especially in anxiety.

Recent studies have shown that sensitivity to risk and loss can be
measured and examined orthogonally in gambling tasks (for a review, see
Phelps et al., 2014). Risk aversion can be quantified using computational
models rather than just overall gamble decisions (risk-avoidant behav-
iors). One simple and quickly implemented model is the mean-variance
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approach, which postulates that preference is a function of risk (variance
in the probability distribution of possible outcomes) and expected value
(defined as mean of outcome probability distribution, D’Acremont and
Bossaerts, 2008). However, this model is not able to measure risk aver-
sion and loss aversion simultaneously because it collapses gain and loss
across a single distribution. An alternative approach is to use expected
utility models, which highlight the role of utility for each specific payoff
and its state probability in decision making (Schonberg et al., 2011). The
most prominent example, prospect theory (Kahneman and Tversky,
1979), posits that preference is a function of outcome probabilities and
(directional) magnitudes of possible outcomes; in this model, a separate
loss parameter permits dissociation of loss aversion from risk aversion.

Using this type of modeling, patients with amygdala damage have
shown a dramatic reduction in loss aversion but relatively intact risk
aversion, suggesting a crucial role of the amygdala in loss but not risk
aversion (De Martino et al., 2010). Loss aversion, but not risk aversion,
has been shown to be regulated by cognitive strategies, accompanied by
reduced skin conductance responses (Sokol-Hessner et al., 2009),
decreased activation of the amygdala-based emotional system, and
increased activation in the cognitive control system (Sokol-Hessner et al.,
2012). Consistently, loss aversion has been directly associated with
exaggerated activation in the amygdala and its connectivity (Charpentier
et al., 2015). Although both limbic (including the amygdala associated
with bottom-up processing of primary emotional afferents) and pre-
frontal (associated with top-down control over primary emotional re-
sponses) systems have been shown to be aberrant in anxiety (Bishop,
2007), direct neural and behavioral evidence for the importance of loss
aversion in decision making among anxious individuals is still lacking.

While individual differences in personality have been associated with
differential motives to achieve or avoid failure (Atkinson, 1957), anxious
individuals have shown generally avoidant behaviors (Bishop and Gagne,
2018; McNaughton and Corr, 2004). Unlike commonly observed alter-
ations of executive functions across populations with elevated trait and
pathological anxiety, risk-avoidant behaviors might be specific to path-
ological anxiety (Charpentier et al., 2016b). Altered loss aversion has
been observed in individuals with pathological anxiety (Charpentier
et al., 2016) and in adolescent anxiety (Ernst et al., 2014), depression
(Huh et al., 2016), and greedy personality (Li et al., 2019). However,
whether findings among those with pathological anxiety hold for healthy
populations with varying levels of anxiety, as well as the potential role of
the amygdala in these processes, remain unclear.

In this study, we examined the determinant roles of risk aversion and
loss aversion during decision making, as well as roles of the amygdala
and its connectivity with prefrontal control regions, in anxious in-
dividuals. We adopted a gambling task from a previous study (De Martino
et al., 2010) to independently measure risk aversion and loss aversion,
and examined associated brain activation and connectivity using func-
tional magnetic resonance imaging (fMRI). We predicted that loss aver-
sion would be the dominant predictor over risk aversion in decision
making, and that augmented loss aversion but not risk aversion would be
evident in high relative to low anxious individuals. We expected
augmented loss aversion to be associated with dysconnectivity between
amygdala-based (bottom-up/emotional) and prefrontal-based (top--
down/control) neural systems in anxious individuals.

2. Methods and materials
2.1. Participants

Fifty-six healthy individuals (30 female, age = 21.18 + 2.27, M + SD)
were selected from a pool of 384 participants based on trait anxiety
assessed by a Chinese translation of State-Trait Anxiety Inventory (STAI-
T; Shek, 1993; Spielberger et al., 1983). The sample consisted of 28 in-
dividuals with high trait anxiety (HA; STAI-T > 45, >75th percentile)
and 28 individuals with low trait anxiety (LA; STAI-T < 35, <25th
percentile). The sample sizes was determined based on previous studies
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of loss aversion (Charpentier et al., 2015, Charpentier et al., 2016;
Sokol-Hessner et al., 2009). Given high comorbidity among anxiety and
depression (Clark and Watson, 1991; Stavrakaki and Vargo, 1986), we
included the Chinese version of the Zung self-rating depression scale
(SDS; Shu, 1993; Zung et al., 1965). None reported a history of neuro-
logical or psychiatric disorders or head injury. Written informed consent
was obtained from each participant. This study was approved by the
Institutional Review Board of Beijing Normal University.

2.2. Task design

To independently measure the impact of loss/gain and risk conditions
on decision making, we employed a risky decision making paradigm to
manipulate the expected value and potential outcome variance (De
Martino et al., 2010). In this paradigm, participants were asked to make
decisions of whether to gamble. The gamble in each trial was composed
of one of 16 potential gains ranging from +¥20 to +¥50 (displayed in
green), and one of 16 potential losses ranging from -¥20 to -¥50 (dis-
played in red), both varied in an increment of ¥2 (Fig. 1).

Expected value (EV) was calculated as a function of the size and
probability of potential gains (G, positive value) and losses (L, negative
value): EV = 0.5 x G + 0.5 x L; large probable gain and small probable
loss leads to high EV. Variance was measured as the square of the ab-
solute difference between probable gains and losses: VAR = (0.5 x G —
0.5 x L) % large probable gain vs. large probable loss leads to high VAR.
See Fig. 1 for the matrix of the decision space for EV and VAR. Each of the
256 (16 x 16) possible gain-loss pairs was presented once per subject.

The 256 trials were randomly divided across 2 sessions, each of which
included 128 trials and lasted for approximately 8 min. Stimulus display
and behavioral data acquisition were conducted using E-Prime software
(Version 2.0, Psychology Software Tools, Inc., Pittsburgh, PA, USA). One
week before the experiment, each participant was given ¥50 in cash as an
initial endowment and was informed that the final payment would be
made at the end of the experiment according to the sum of the initial
endowment and their gains/losses from an actual decision in a randomly
selected trial during the experiment. This procedure was used to maxi-
mize participant consideration of each trial and ensure that each decision
was made independently (De Martino et al., 2010; Tom et al., 2007). All
participants completed a practice version to gain familiarity with the task
before scanning.

2.3. Behavioral models and estimates of risk and loss aversion

In general, for model-free behavioral analyses, we compared the
distribution of gamble decisions, probability of gamble decisions, and its
changes associated with EV and VAR respectively between two groups.
Next, we compared the goodness-of-fit of two models to explain decisions
among anxious individuals. While the mean-variance model was able to
differentiate contributions of risk variance from objective expected
value, risk aversion and loss aversion were confounded. Thus, we used
prospect theory model to obtain independent estimates of risk and loss
attitudes.

To assess the similarity among the distribution of decision matrix
and the distributions of EV and VAR matrix, similarity structural in-
dexes (Wang et al., 2004) were calculated. A non-parametric boot-
strapping method (Mooney, 1993) was applied to test the significance
of the similarity. To assess sensitivity to risk, we first used regression
models to measure the gamble rates as a function of variance. Proba-
bility of gamble selection for choices sharing the same gamble variance
as the dependent variable was regressed on VAR as an independent
variable in each group. The slope () of this regression was defined as
the estimate of risk aversion. The indifference point between accept
and reject a gamble (i.e., the EV with an acceptance rate of 50%) was
also calculated by fitting the EV with a logistic regression model as the
independent variable and participants’ choices as the dependent
variable.
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We measured risk aversion by applying the mean-variance approach
(Schonberg et al., 2011). The value of a risky option is calculated as a
trade-off between the EV and VAR (D’Acremont and Bossaerts, 2008)

v(gamble) =EV — VAR a

where p reflects a penalty for risk, and g > 0 indicates risk avoidance.
Risk and loss aversion were estimated simultaneously in a three-

parameter model (Sokol-Hessner et al., 2009, 2012) using the power

value function from prospect theory (Kahneman and Tversky, 1979).

y(xt)=x 2)
v(x)= — A(=x)" 3)
P : @

= (1 + e #(v{sambie)—s(guaranteed)) )

where x is the absolute amount of potential gain or loss, v(x*) and v(x™)
represent the subjective value of potential gain or loss, respectively,
gamma (y) indicates risk aversion (diminishing sensitivity to changes in
value as the absolute value increases). While y > 1 represents risk
seeking, y < 1 indicates risk aversion and a small value of y (ie.,
approaching 0) indicates high risk aversion. The lambda (1) represents
subjective weighting of losses (relative to gains). A high value of 4 in-
dicates high loss aversion. Mu (u) refers to the consistency of partici-
pants’ choices. P is the acceptance rate of gamble.

Both of these two models were fitted at the individual level. To avoid
attraction to local minima, all parameters were estimated multiple times
for each participant with varying initiation points. We conducted model
comparison using Bayesian information criterion (BIC) scores (Haugh-
ton, 1988), which is an approximation of the model evidence, with lower
BIC scores indicating higher model evidence or better model fit. To test
the contributions of risk aversion and loss aversion to behavioral de-
cisions, multiple regression analyses were performed with gamble
acceptance as the dependent variable, and with y, 4, and group as inde-
pendent variables, respectively.

Two-sample t-tests were performed to examine group differences on
overall gamble rates and reaction times. To test whether high anxious
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Fig. 1. Task design. Top of the figure shows
an example trial. During each trial, an image
displaying two options (gamble or not
gamble) was presented for 3s with an inter-
trial-interval at 400 ms-1600 ms. There
was an equal probability (50%) of gaining or
losing a certain amount of money for the
gamble option. If participants chose not to
gamble, there was no reward or penalty.
Omitting a response during the 3s window
resulted in a penalty of ¥2. Bottom of the
figure shows matrices of the decision space,
displaying EV (on the left) and VAR (on the
right) of the trials as a function of potential
gain (x axis) and loss (y axis). EV: expected
value; i.e., relative assessment of probable

2000  oytcome as a function of gain relative to loss.
VAR: variance; i.e., the square of absolute

1500 difference between probable gains relative to
losses. Heat index: red: high value; blue: low

1000 value.

500

40 50

Potential gain (Y)

individuals were more risk or loss aversive than those low in trait anxiety,
one-tailed two-sample t-tests were performed. To further assess whether
group difference in risk and loss aversion would support the alternative
or null hypothesis, we calculated Bayes factors (BF) to determine the
strength of evidence for the alternative hypothesis relative to the null
hypothesis (Dienes, 2014). The independent-sample BF t-test was per-
formed using the Bayes factor package (version 0.9.2-+; http://bayesfac
torpcl.r-forge.r-project.org/). To test the associations between anxiety
and risk and loss aversion, a multiple regression analysis was performed
with group as the dependent variable, and with the y and 4 as indepen-
dent variables.

2.4. Imaging data acquisition and analysis

MRI data were acquired on a 3T Siemens MAGNETOM Trio MR sys-
tem at Beijing Normal University, using a 12-channel phased-array head
coil. The fMRI data were acquired using gradient-echo echo-planer im-
aging (EPI) with the following parameters: TR = 2 s, TE = 30s, 33 slices,
3.5 mm thick, 0.7 mm gap, flip angle = 90°, field of view = 200 x 200
mm, matrix = 64 x 64. A total of 584 volumes were acquired over a
period of 20 min. In each of the two runs, 292 volumes were acquired. A
high resolution 3D structural brain image was acquired for each partic-
ipant using a T1-weighted MPRAGE sequence: TR/TE = 2530 ms/3.39
ms, flip angle = 7°, data matrix = 256 x 256, FOV = 256 mm x 256 mm.
Image data analysis was conducted using SPM8 (http://www.fil.ion.ucl
.ac.uk/spm/). Image preprocessing, including slice-timing correction,
realignment, co-registration, spatial normalization to a standard MNI
template, resampling to 2-mm isotropic voxels, and spatial smoothing
(with a Gaussian kernel of 8 mm FWHM), was performed.

General linear modeling (GLM) analyses with two models were con-
ducted at the individual level. To identify brain responses to risk vari-
ance, we modeled the onsets of all trials as a single regressor and risk
variance as a parametric modulation regressor. To access neural re-
sponses to expected value, objective EV was entered in another GLM as a
parametric modulation regressor. To determine brain regions associated
with potential gain and loss, respectively, as in a previous study (Tom
et al., 2007), we also modeled onsets of all trials as a single regressor, as
well as two parametric modulation regressors (the magnitudes of the
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potential gain and of potential loss). Group (second) level statistical an-
alyses were then conducted. For risk variance and expected value,
one-sample tests were performed to test brain activation across two
groups and two-sample t-tests were conducted to test group differences.
For the model of potential gain and loss, a 2 (Group, HA vs. LA) x 2
(Outcome, potential gain vs. loss) ANOVA was performed with Group as
a between-subjects factor and Outcome as a within-subjects factor .

2.5. Psychophysiological interaction (PPI) analyses

Given that the amygdala plays a central role in the processing of
emotion, reward, and interactions between them (Baxter and Murray,
2002; LeDoux, 2007; Murray, 2007), psychophysiological interaction
(PPI) analyses with the amygdala as the seed region were conducted to
examine whether modulations of potential gain vs. loss were associated
with the between group difference in connectivity of the amygdala.
Blood-oxygen-level-dependent (BOLD) time-series data of the amygdala
was extracted using a bilateral amygdala mask of the AAL atlas from the
contrasts of potential gain vs. loss in the first-level GLM analysis. For each
participant, a PPI model was built with regressors of i) the interaction
between amygdala activity and Outcome (potential gain vs. loss) , ii) the
main effect of amygdala activity, and iii) the main effect of Outcome
(potential gain vs. loss), corresponding to PPI. ppi, PPLY, and PPLP in the
design matrix. A 2 (Group, HA/LA) x 2 (Outcome, potential gain/loss)
ANOVA was then performed to test the interaction between Group and
Valence in amygdala-based connectivity. All neuroimaging maps were
thresholded at p < 0.001 corrected for multiple comparison using
probabilistic threshold-free cluster enhancement (pTFCE) to avoid an
arbitrary primary cluster-defining threshold (Smith and Nichols, 2009;
Spisék et al., 2019).

To explore the contributions of brain functional connectivity to
behavioral decisions, we conducted regions of interest (ROIs) analyses by
extracting peak value of parameter estimates from significant clusters
based on the results of functional connectivity analysis. Neuronal effect
(in connectivity) of loss aversion was defined as differences of parameter
estimates of potential gain subtracted from potential loss (1’) (see also
Canessa et al., 2013; Charpentier et al., 2015; Li et al., 2019; Tom et al.,
2007). Multiple regression analyses were performed with gamble
acceptance as the dependent variable, and with y, 4, A’ and group as in-
dependent variables.

2.6. Dynamic causal modeling (DCM) analyses

DCM analyses were implemented to examine the direction of the
connectivity and modulatory effect of loss aversion. These effects were
modeled by a differential equation, as previously defined (Friston et al.,
2003). The state (2) of the target region was predicted by the intrinsic
connectivity with the source region (Az), the experimental modulation
onto the connectivity (uBz), and the direct input into the model (Cu).

ROIs were defined as 6-mm-diameter spheres around each in-
dividual’s peak voxel within the clusters/hubs of the amygdala-centered
network (loss > gain condition). Search volumes for these contrasts were
clusters defined in the group contrast in the PPI analysis. Model esti-
mation at the individual level was conducted to evaluate the parameters
of effective connectivity. One-sample and two-sample t-tests at the group
level were performed to determine statistical significance. The Bonfer-
roni procedure was used to correct for multiple comparisons (Dunn,
1961).

3. Results

Participants with gamble selection rates and reaction times beyond
two standard deviations of the mean were excluded from data analyses
(Cousineau and Chartier, 2010; Ratcliff, 1993; Rousseeuw and Hubert,
2011). As a result, there were 23 individuals in the high anxiety (HA)
group (10 females, age = 21.22 + 2.19 years, M + SD) and 22 in the low
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anxiety (LA) group (12 females, age = 21.55 + 1.41 years) included for
final data analyses.

3.1. The behaviorally dominant contributor to decisions

The percentage of gamble choices for each trial is visualized asa 16 x
16 matrix across groups, within HA and LA, separately, and for group
difference (Fig. 2). A similarity analysis showed that the similarity
structural index (SSI) between the distribution of expected value (EV)
matrix and decision matrix was significantly higher than random level in
all groups (bootstrapping ps < 0.001 for across groups, within HA and LA;
p = 0.04 for group difference; Fig. 2), the SSI between the distribution of
variance (VAR) matrix and decision matrix was significantly higher than
random level across groups (p = 0.01; Fig. 2A) and in HA (p = 0.04;
Fig. 2B), and the SSI between EV and decision matrices were significantly
higher than the ones between VAR and decision matrices in all groups (ps
< 0.001; Fig. 2). These results indicate that the distribution of decisions is
more consistent with EV than VAR.

Model comparison showed that the three-parameter prospect-theory
model was the best model with the lowest Bayesian Information Criterion
(BIC) scores (Table 1). Based on the winning model of prospect theory,
log(y) was not significantly correlated with log (A) r = —0.23,p = 0.12).
In contrast, log(p) from the mean-variance was positively correlated with
log (\) (r = 0.49, p < 0.001). Multiple regression showed that across
groups, loss aversion (1), but not risk aversion (y), significantly predicted
behavioral decisions. All models involving A were significant. Although y
alone could not predict behavioral decision, the involvement
ofysignificantly improved the prediction of the model when accompanied
by A(see Models 1-7 in Table 2). These results suggest that loss aversion is
the dominant predictor of behavioral decisions, though risk aversion has
additional predictive utility.

3.2. Heightened loss aversion but not risk aversion in high anxiety
individuals

The two-sample t-test showed that overall gamble rates in HA were
significantly lower than those in LA (t (43) = —2.13, p = 0.04; Fig. 3A),
but no significant differences were observed in reaction times (t (43) =
0.58, p = 0.56; Fig. 3B). There was no significant group difference found
for indifference point (t (43) = 1.09, p = 0.28; Fig. 3C). A regression
model of outcome variance showed that risk aversion of HA was not
significantly different from that of LA (t (43) = 0.76, p = 0.45; Fig. 3D).
Results of BF t-test showed that BF was approximately equal to 1/3 (BF
independent-sample = 0.36), indicating support for the null hypothesis of
equivalence in risk aversion between groups.

Based on the prospect-theory model, risk aversiony was not signifi-
cantly different between the groups (t (43) = —0.88, p = 0.40; Fig. 3E),
whereas 4 of HA was significantly higher than in LA (t (43) = 1.80,p =
0.04; Fig. 3F), indicating greater loss aversion in HA. The multiple
regression model showed that loss aversion was a significant predictor of
group (t (43) = 2.36, p = 0.02), but risk aversion was not (t = —1.73,p =
0.09). Although levels of depression were significantly correlated with
trait anxiety across groups (r = 0.79, p < 0.001), the regression model
with group as dependent variable and both of anxiety and depression as
regressors showed that anxiety was a significant predictor (t (43) =
10.08, p < 0.001), but not depression (t (43) = —0.64, p = 0.52).
Together with the regression model of outcome variance, the results
provide robust evidence of heightened loss aversion but no difference in
risk aversion for HA relative to LA.

3.3. Brain responses to potential gain and loss

GLM with magnitude of the potential gain and loss as parametric
regressors, revealed comparable brain areas associated with activation as
magnitude of potential gain and attenuation as magnitude of potential
loss across groups. These areas included bilateral medial prefrontal
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Fig. 2. Decision distributions and similarity. The first column reflects distributions of gamble rates at each level of potential gain vs. loss in all subjects (row A), high
anxiety (HA; row B), low anxiety (LA; row C) and group difference (LA-HA; row D). Heatmaps indicate the rate of gamble selection (red: high; blue: low). The second
through fourth columns display histograms of similarities and difference (Diff) of similarities among the behavioral distributions and design spaces of EV, VAR. The
random distribution was generated by the bootstrap procedure (see Methods for more details).

Table 1

Comparison of model fit across mean-variance and prospect-theory models.
Model description Number of parameters BIC
Model 1: g 1 8196
Model 2: 4 1 14925
Model 3: y 1 14488
Model 4: p 1 14524
Model 5: 7, 4 2 7607
Model 6: p, A 2 7642
Model 7: p, y 2 14608
Model 8: p, v, 4 3 7557*

Note: * Winning model (lowest BIC).

cortex (mPFC), vIPFC, dorsolateral prefrontal cortex (dIPFC), dorsal
anterior cingulate cortex (dACC), anterior insula (AI), ventral and dorsal
striatum, and inferior parietal lobule (IPL; Fig. 4A; Tables S1 and S2). In
contrast, a greater activation of loss vs. gain was observed in the amyg-
dala (Fig. 4B; Tables S1 and S2).

For risk variance and expected value, there were no significant brain
activations using the pTFCE threshold. For the sake of exploration, we
used a lenient threshold that combined height (p < 0.005) and extent (20
voxels) threshold (Lieberman and Cunningham, 2009), which revealed
negative associations of activations in bilateral ventral striatum with risk
variance (Figure S1) and greater responses of right vIPFC, superior
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Table 2

Prediction of gamble decisions by different parameters.
Independent Number of R? F p AF!  Ap
variables parameters
Model 1: group 1 0.10 452 0.039 - -
Model 2: y 1 0.07 317 0.082 - -
Model 3: 4 1 0.14 7.04 0.011 - -
Model 4: 4, y 2 0.33 1045 <0.001 9.73  0.003
Model 5: group, y 2 0.15 3.57 0.037 216 0.149
Model 6: group, A 2 0.19 4.85 0.012 4.18 0.046
Model 7: group, 3 0.34 7.16 <0.001 9.67 0.003

7, A

Model 8: A’ 1 0.19 10.08 0.003 - -
Model 9: 4, A/ 2 0.28 8.01 0.001 8.32 0.006
Model 10: 4, 4, ¥ 3 0.42 9.98 <0.001 7.01 0.011
Model 11: group, 4 043 7.46 <0.001 337 0.073

7, A4

Note: AF andAp are the F value and p value for the change between models (each
given model compared with the prior model).A’ indicates neural loss aversion,
which was defined as the functional connectivity between the amygdala and
dIPFC modulated by the interaction between groups and potential gains and

losses.

temporal gyrus (STG) and amygdala to potential gain and loss in HA

(Figure S2).
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Fig. 3. Behavioral group differences. Group comparison of A) probabilities of gamble selection, B) reaction time, C) indifference point, D) sensitivity to variance and E)
loss aversion parameter estimates lambda (1) and risk aversion parameter estimates (-y) in HA vs. LA. *p < 0.05. Data are presented as M + SEM.
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Fig. 4. Brain responses to potential gain and loss. A) Increased parametric responses to size of potential gain (red) and decreased parametric responses to size of potential
loss (blue). B) Deactivation of right amygdala for potential gain (blue) and activation of bilateral amygdala for potential loss (red; an amygdala mask from AAL

template was applied for visualization).

3.4. Group difference in functional connectivity between the amygdala and
prefrontal areas in resposne to potential loss vs. gain

With potential gain or loss as the psychological context and the BOLD
signal of the amygdala as the physiological context (Fig. 5A). Psycho-
physiological interaction (PPI) analyses revealed an interaction between
Group (HA/LA) and Outcome (potential gain vs. loss) in task-dependent
connectivity of the amygdala with right dIPFC (Fig. 5B; MNI coordinates,

A

X =46,y =24,z =42;Z =4.47,p < 0.001, k = 145). The coupling of the
amygdala with the dIPFC was significantly more negative for assessing
potential loss than gain in HA, but not in LA; functional connectivity
between the amygdala and the dIPFC was significantly more positive for
potential gain, whereas the coupling between the amygdala and the
dIPFC was significantly more negative for potential loss estimation in HA
than in LA (Fig. 5 C). With a lenient threshold of combined height (p <
0.005) and extent (20 voxels) threshold, it was also revealed that

C [ Potential gain
= Potential loss
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Fig. 5. Alterations in amygdala-based connections in high anxiety (HA) compared to low anxiety (LA) during decision making. A) An amygdala mask from AAL was applied to
define the seed region for PPI. B) Changes of the amygdalar connectivity with right dorsal lateral prefrontal cortex (dIPFC) the interaction between Outcome (potential
gain vs. loss) and Group (HA/LA); C) Reponses of dIPFC for potential gain and loss in HA and LA, respectively. Bars indicate M + SEM.
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connectivity of the amygdala with the IPL, vIPFC, STG, and right caudate
was significantly more negative for assessing potential loss than gain in
HA (Figure S3). These results point to a shift from positive to negative
connectivity between the amygdala and prefrontal areas in response to
processing potential loss vs. gain in HA but not in LA, which suggests
increased emotional sensitivity and maladaptive cognitive control in HA.

3.5. Neural contributors to behavioral decisions in anxiety

Results showed that group, behavioral loss aversion (1), and neural
loss aversion (4’), but not risk aversion (y) significantly predict behav-
ioral decisions. All the models involving 4 were significant. Although y
alone could not predict behavioral decision, the involvement of y
significantly improved the prediction of the models when accompanied
by A (see Models 8-11 in Table 2). These results suggest that loss aversion
is the dominant predictor at both the behavioral and neural level.

3.6. Increased bottom-up connectivity between the amygdala and right
dIPFC in HA than LA

The Results of DCM analyses showed significantly positive reciprocal
intrinsic connectivity between the amygdala and right dIPFC (t = 9.47, p
uncorrected < 0.001 for bottom-up (forward) connections from the amyg-
dala to right dIPFC, and t = 9.10, p corrected < 0.001 for top-down (back-
ward) connections from right dIPFC to the amygdala; Fig. 6A). Compared
to LA, HA showed significantly increased intrinsic connectivity from the
amygdala to right dIPFC (t = 2.69, P uncorrected = 0.02; Fig. 6B) and
marginally decreased intrinsic connectivity from right dIPFC to the
amygdala (t = 1.78, P uncorrected = 0.08). These results indicated that
during the task, there were enhanced communications in both the
bottom-up (forward) connections from the amygdala to right dIPFC and
top-down (backward) connections from right dIPFC to the amygdala.
More importantly, bottom-up information (from the amygdala to right
dIPFC) was enhanced in anxious individuals when making choices be-
tween both potential losses and gains.

4. Discussion

Despite numerous studies examining risk aversion and loss aversion
(Admon et al., 2012; Albert and Duffy, 2012; De Martino et al., 2010;
Phelps et al., 2014; Sokol-Hessner et al., 2009; Tom et al., 2007), their
relationship to each other and contributions to behavioral decisions were
unclear. Our results showed that loss aversion but not risk aversion is
dominant in predicting behavioral decisions, especially in anxious in-
dividuals. Despite of less gamble decisions in anxious individuals, no
group difference was found in subjective aversion to risk. In contrast, we
found heightened loss aversion in high anxious individuals during risk
decision making. Our results thus suggest that the negative decision bias
in anxiety is due to an overweighting of loss rather than risk. Given that
risk and loss aversion were in general not modeled independently in
previous studies of risk decision making in anxiety (for a review, see
Phelps et al., 2014), high risk avoidant behaviors of anxious individuals
in those studies may be attributed to loss aversion rather than their risk
attitudes.

Because anxiety has been associated with increased bottom-up,
stimulus-driven processing (Eysenck et al., 2007) and decreased
top-down, goal-directed processing (Bishop, 2007), the heightened loss
aversion in HA is likely driven by attenuated top-down affective control
over augmented bottom-up emotional processing when assessing un-
certain gain/loss outcomes, with an asymmetric emphasis on potential
loss. Additionally, the amygdala-caudate connectivity was found to be
decreased in response to loss and increased in response to gain in HA,
possibly reflecting asymmetric coupling of reward and punishment esti-
mation, consistent with exaggerated approach-avoidance conflict
commonly observed in anxious individuals (Stein and Paulus, 2009). An
integrative explanation is that dysfunctional top-down and bottom-up
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systems jointly contribute to risk decision making in anxiety, leading to
increased awareness of and/or sensitivity to potential loss, which in turn
results in an overestimation of the likelihood of loss.

Neuroimaging findings support the hypothesis that both bottom-up
(especially affective processing) and top-down (especially emotion
regulation) biases contribute to decision making among anxious in-
dividuals. The increased responses to potential loss but decreased re-
sponses to potential gain in the amygdala and ventral attention network
of high anxious individuals indicate the neural substrates of increased
emotional and attentional engagement to perceived loss over gain. These
results suggest that augmentation of the asymmetry between reward and
punishment in anxiety may include a bias towards perceived loss or
punishment, as well as decreased sensitivity to gains. The amygdala, a
core region of the emotional brain (LeDoux, 2000), has been shown to be
hyperactive in anxious individual (Davis, 1992) and is pivotal in the
generation of loss aversion (De Martino et al., 2010). The ventral atten-
tion network, encompassing portions of the vIPFC and ventral STG
(Corbetta and Shulman, 2002), has been associated with bottom-up
stimulus-driven attentional processing (Corbetta et al., 2008). Previous
studies have indicated that an overactive ventral attention network
during bottom-up related processing is related to elevated anxiety (for a
review, see Sylvester et al., 2012). Given that the processes related to loss
aversion tend to operate automatically (Kermer et al., 2006), increased
aversion to potential loss in anxious individuals could be partially driven
by enhanced bottom-up processing with heightened amygdala activity
for threat. Thus, these results provide neurobehavioral evidence consis-
tent with the hypothesis of increased attention to loss among anxious
individuals when assessing gambling options. Given the role of the
caudate in the evaluation of reward processing (Haruno et al., 2004;
Knutson et al., 2005; Tanaka et al., 2004), positive or negative functional
coupling of the amygdala with the caudate modulated by potential gain
or loss suggests a devaluation of gain but overvaluation of loss in anxious
individuals (see also Charpentier et al., 2015). This is consistent with the
idea that behavioral loss aversion is related to the influence of the
negative anticipatory response on the computation and evaluation of
potential outcome (De Martino et al., 2010). These results likely reflect
the neural substrates of increased avoidance to loss and decreased
approach to gain, both of which contribute to deficits of computation and
evaluation of anticipated outcomes in anxiety.

Reduced connectivity between the amygdala and top-down prefrontal
control areas is also a candidate contributor to heightened loss aversion.
The frontoparietal network (including parts of dIPFC and IPL), referred to
as the executive control network (Fan et al., 2014; Seeley et al., 2007), is
involved in adaptive adjustments to achieve general goals (Dosenbach
et al., 2008). A large body of evidence has shown that decreased func-
tioning of frontoparietal networks are linked to impaired attentional or
inhibitory control in both clinical and nonclinical anxiety (for a review,
see Sylvester et al., 2012). The dIPFC and dIPFC-amygdala pathway are
also involved in successful regulation of negative emotion (Davidson
et al., 2000; Lee et al., 2012; Ochsner et al., 2004; Taylor and Liberzon,
2007). Dysconnectivity of the amygdala with prefrontal control network
has been consistently shown in recent meta-analysis of anxious brain
networks (Xu et al., 2019), while connectome-based predictive model of
anxiety has shown the importance of the intrinsic subcortical-prefrontal
connectivity in predicting trait anxiety (Wang et al., 2020). Because loss
aversion could be reduced by intentional cognitive regulation strategies
(Sokol-Hessner et al., 2009), the present results may indicate an atten-
uation of inhibitory control to override competing loss estimation in
anxious individuals.

The ability of amygdala-dIPFC connectivity (in relation to loss aver-
sion) to predict behavioral decisions and decreased connectivity of this
circuit in high anxiety suggests a potential abnormality in anxious in-
dividuals. While low anxious individuals seemed to exhibit effective
inhibitory control of the dIPFC over the amygdala for analytic selection
during trials with potential losses, this regulatory effect was attenuated in
anxious individuals. Our results also support the homeostatic hypothesis
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Fig. 6. The model and results of DCM analysis. A) The model with full reciprocal connectivity between the amygdala and right dIPFC. B) Compared to LA, HA showed

significantly increased intrinsic connectivity from the amygdala to dIPFC.

of decision making dysfunctions in psychiatry which proposed that
maladaptive responses of psychiatric patients result from an unstable
homeostatic balance underpinned by brain systems for multiple bottom-
up and top-down processes (Paulus, 2007). Increased intrinsic connec-
tivity from the amygdala to right dIPFC and marginally decreased
intrinsic connectivity from right dIPFC to the amygdala suggest mis-
communications between the amygdala and dIPFC in anxious in-
dividuals, characterized by strengthened bottom-up information
afferents and weakened top-down affective control systems. Consistent
with preclinical work of anxious temperament (Birn et al., 2014), these
findings suggest that amygdala-dIPFC coupling is important for decision
making (with an overemphasis on loss aversion), wherein increased
bottom-up emotional and decreased top-down control processes under-
pin anxious behavior.

Interestingly, a recent study found enhanced risk aversion but
equivalent loss aversion in pathologically anxious individuals relative to
controls (Charpentier et al., 2016). Together with our results, these
findings suggest potentially different decision preferences and patterns
between subclinical and clinical populations of anxiety. Another poten-
tial explanation might be that a different task manipulation was used in
that study. Despite that a similar gambling paradigm was adopted, par-
ticipants were also asked to simultaneously complete an emotional
memory task, which might divert cognitive resources for risk and value
evaluation during decision making and result in decisions based on su-
perficial risk. Additionally, the correlation between risk aversion and loss
aversion was observed in the mean-variance model (consistent with
Canessa et al.,, 2013) but not prospect theory model (consistent with
Charpentier et al., 2016) in the present study. The differentiation in these
correlations between models suggests that risk aversion, as defined by
the mean-variance model, might be partially explained by loss aversion,
while the prospect theory model may be able to independently measure
loss aversion and risk aversion. Taken together, our results suggest
distinctive neurocognitive mechanisms between risk aversion and loss
aversion.

Consistent with previous studies (Christopoulos et al., 2009; Krain
etal., 2006; Schultz et al., 2011), we found that responses of the bilateral
ventral striatum and vIPFC were associated with risk variance. However,
there was no association between risk and activity in the insula, a brain
structure which has shown an important role in risk processing (Mohr
etal., 2010; Preuschoff et al., 2008) and anticipatory anxiety (Engelmann
et al., 2015). One explanation might be that we controlled for risk
probability to be fixed across conditions at 50% in the current study, to
which the insula is sensitive (Christopoulos et al., 2009). Given that risk,
defined as outcome variance in the present study, consists of variations in
outcome magnitude and probability, these results suggest separate neural
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underpinnings for these components of risk (Berns and Bell, 2012;
Shenhav and Greene, 2010; Smith et al., 2009).
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