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Abstract The human brain undergoes rapid development

during childhood, with significant improvement in a wide

spectrum of cognitive and affective functions. Mapping

domain- and age-specific brain activity patterns has

important implications for characterizing the development

of children’s cognitive and affective functions. The current

mainstay of brain templates is primarily derived from

structural magnetic resonance imaging (MRI), and thus is

not ideal for mapping children’s cognitive and affective

brain development. By integrating task-dependent func-

tional MRI data from a large sample of 250 children (aged

7 to 12) across multiple domains and the latest easy-to-use

and transparent preprocessing workflow, we here created a

set of age-specific brain functional activity maps across

four domains: attention, executive function, emotion, and

risky decision-making. Moreover, we developed a toolbox

named Developmental Brain Functional Activity maps

across multiple domains that enables researchers to visu-

alize and download domain- and age-specific brain activity

maps for various needs. This toolbox and maps have been

released on the Neuroimaging Informatics Tools and

Resources Clearinghouse website (http://www.nitrc.org/

projects/dbfa). Our study provides domain- and age-

specific brain activity maps for future developmental neu-

roimaging studies in both healthy and clinical populations.
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Introduction

During childhood, the brain undergoes rapid and protracted

development, along with increasingly improved compe-

tence in a wide range of cognitive and affective functions,

including attention, memory, emotion, and reward [1].

Such improvement at the behavioral level is often accom-

panied by rapid development of the brain, with substantial

changes in structure and function such as gray matter

volume [2], cortical thickness [3], and functional activation

intensity [4], as well as the structural and functional

connectivity of large-scale networks [5, 6]. Moreover, there

are both linear and non-linear age-related changes in brain

structure and function at both regional and large-scale

network levels [7, 8]. And different brain regions and

systems exhibit highly heterogeneous patterns over devel-

opment, some maturing earlier than others. These devel-

opmental features, with concomitant changes along

multiple dimensions, pose challenges to map how each of

them and their interplay unfolds as the brain matures, and

even more challenging to determine the development of

structure-function coupling and the principles of how brain

maturation gives rise to increasing improvements in

children’s cognitive and affective competencies [3, 9].

Therefore, a systematic approach spanning a wide range of

ages and multiple task domains is required to better assess

the normative maturation of functional brain systems and

networks. In the field of developmental cognitive neuro-

science, mapping domain- and age-specific brain activity

patterns is one critical step towards characterizing the

normative neuronal development of children’s cognitive

and affective functions [2, 5, 10, 11]. This will also provide

ample opportunities for further brain-inspired applications

in the fields of education, mental health, and the diagnosis

of children with neurodevelopmental disorders [12–14].

Recent advances in developmental neuroimaging tech-

niques, especially non-invasive multimodal magnetic res-

onance imaging (MRI), offer an unprecedented opportunity

to map brain maturation in vivo as well as typical and

atypical neurodevelopment of children’s cognition, emo-

tion, and behavior [2, 5, 6, 10, 15–19]. In the past two

decades, for instance, several influential national projects

focusing on brain development in children and adolescents

have been launched in the USA and Europe, such as the

Philadelphia Neurodevelopmental Cohort [20], the Ado-

lescent Brain Development study [21], and the IMAGEN

project [22]. The typical research framework consists of

normalizing individual brain images into a common or

standard stereotactic space using a prior structural tem-

plate, such as the International Consortium for Brain

Mapping (ICBM152) templates [23]. Given that the brain

undergoes rapid and protracted development during

childhood, brain templates specific for young children

have often been generated for MRI investigations in the

pediatric population [24–28]. Recent studies have demon-

strated several major benefits of using age-specific brain

templates for pediatric participants, including fewer

requirements for spatial deformation during image nor-

malization and maintaining a great number of the pediatric

characteristics of individual brains [24, 25, 29]. Therefore,

creating domain- and age-specific functional activity maps

is necessary for mapping the neurodevelopment of chil-

dren’s cognitive and affective functions.

The construction of functional activity templates for the

pediatric brain requires the consideration of several major

factors, including age differences and the heterogeneous

development of different cognitive and affective domains.

First, there are prominent age-related developmental

changes in both brain structure and function which vary

greatly across different regions [3, 26, 28, 30]. Numerous

developmental neuroimaging studies, for instance, have

demonstrated that unimodal areas such as the visual and

sensorimotor cortices mature earlier than polymodal asso-

ciation areas, followed by higher-order prefrontal regions

[31]. Second, the cognitive and affective functions of

children are characterized by increasingly improved com-

petence in a wide range of domains, including attention,

executive function, emotion, and reward [5, 17, 32–34].

Decades of research in developmental psychology have

characterized the heterogeneous development of children’s

cognitive and affective functions [35–39]. For instance,

executive functions such as working memory undergo

protracted development with much slower maturation than

attention abilities [40], and emotional perception and

incentive seeking mature earlier than higher-order cogni-

tive control and emotion regulation [41]. Thus, a system-

atic approach to age-related changes in brain, cognition,

and behavior across multiple task domains is required for

the construction of functional activity maps.

In the present study, we aimed to construct a set of high-

quality domain- and age-specific functional activity maps

of the brain by integrating structural MRI and task-

dependent fMRI across multiple domains in a large sample

of typically developing children (n = 250, from 7 to 12

years old). High-quality structural and functional imaging

data were collected on a 3T Siemens Prisma scanner.

Children underwent fMRI while performing a set of four

cognitive and affective tasks with well-established para-

digms: attention network task, numerical n-back working

memory, emotion perception, and risky decision making

with reward (see Methods). We implemented the latest

easy-to-use and transparent preprocessing workflow named

fMRIPrep [42] to pre-process task-dependent fMRI data

and constructed a general linear model (GLM) for different

age groups with multiple domains. Multiple linear
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regression was used to estimate overall age-related brain

maps. More importantly, we developed a Python-based

toolbox named Developmental Brain Functional Activity

(DBFA) mapping that provides an instrument with conve-

nient access to domain- and age-specific brain activity

maps (Fig. 1C). The public availability of this toolbox with

functional brain activity maps will provide ample oppor-

tunities and potential for applications to mapping the

typical and atypical neurodevelopment of children’s cog-

nitive and affective functions, and among other domains in

both healthy and clinical populations.

Methods and Materials

Participants

We examined a large sample of 250 typically developing

children from 7 to 12 years old (mean = 9.21 ± 1.36) with

4 cognitive tasks, which was derived from the Children

School Functions and Brain Development Project (CBD,

Beijing Cohort). The attention task (attention network test,

ANT) included 240 participants, the executive function

task (numerical n-back working memory, WM) included

245, the emotion task (emotion matching, EM) included

249, and the risky decision-making task (balloon analogue

risk task, BART) included 250. The number of participants

in the toolbox of these functional activity maps will be

continuously updated as the project progresses. All partic-

ipants reported no history of vision problems, no history of

neurological or psychiatric disorders, and no current use of

any medication or recreational drugs. Written informed

consent was given by each child and one of their parents or

legal guardians. The procedures of consent and experiment

were approved by the local Ethics Committee and were in

accordance with the standards of the Declaration of

Helsinki. The inclusion criteria of head motion by mean

frame-wise displacement (FD) was\0.5 mm in each task.

The demographics of the dataset for 4 tasks are listed in

Table S1.

Fig. 1 Task designs, preprocessing workflow, and the main interface

of the developmental brain functional activity (DBFA) toolbox.

A Task designs for the four domains of attention, working memory,

emotion, and reward risky decision-making. B Workflow of data pre-

processing by fMRIPrep [42]. Technical details of critical processing

steps: (1) skull stripping, (2) BOLD reference image estimation, (3)

head-motion estimation, (4) slice-timing correction, (5) susceptibility

distortion correction (SDC), (6) registration, and (7) resampling

BOLD runs onto standard spaces (spatial normalization). C The main

interface of the DBFA toolbox with a set of core functions in the

menu to visualize and download domain- and age-specific (with

gender factor only for emotion processing) activity maps. Users can

customize the threshold criteria in terms of P values and cluster-size

of voxels, with uncorrected, false discovery rate (FDR), and

familywise error (FWE) correction for multiple comparisons. Note:

BOLD, blood oxygen level dependent.
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Cognitive and Affective Tasks

Attention Network Test (ANT)

We opted for a child-friendly version of the ANT

consisting of six conditions: four cue conditions and two

target conditions [32, 43] (Fig. 1A). Each trial consisted of

a target stimulus preceded by one of the four cue conditions

(1) no-cue, (2) double-cue, (3) center-cue, or (4) spatial-

cue, either above or below the fixation cross at the screen

center. The centrally presented target ‘fish’ was flanked by

one of the three different types of ‘fish’ stimulus: (1)

congruent flanker ‘fish’, (2) incongruent flanker ‘fish’, or

(3) only a ‘fish’. Each trial started with a fixation cross at

the central of the screen for 400 ms to 1000 ms. Thereafter,

in some of the next trials a warning cue appeared for 150

ms. And a stationary fixation phase of 450 ms was

presented after the end of the cue. Thereafter, the target

‘fish’ stimulus with one of two types of flanker (congruent

or incongruent) was presented until the participant made a

button press or reached the time limit of 1000 ms. The

duration of the last fixation was 1000 ms minus the

corresponding reaction time. After responding, the partic-

ipant received visual feedback from the computer. For

correct responses, a simple animation sequence showed the

target fish blowing bubbles. Incorrect responses had no

animation of the fish. In each trial, the participant had to

press either a left or right button indicating the direction of

the centrally-presented arrow in the target phase. Partici-

pants were instructed to make a decision response as

quickly and accurately as possible in each trial. The entire

task was divided into two runs, each of which lasted *6

min. Stimuli were presented via E-Prime 2.0, which is

widely used in psychological experiments (http://www.

pstnet.com; Psychology Software Tools, Inc., Pittsburgh,

PA).

Numerical n-Back Working Memory (WM)

A classic numerical n-back task was used to assess WM

(Fig. 1A). Participants completed 12 cycles of three

workloads (0-, 1-, and 2-back) by a jittered resting-fixation

baseline ranging from 8 s to 12 s. Within each block, a

random sequence of 15 single digits was shown to the

participant. Each digit was presented for 400 ms, followed

by an inter-stimulus interval of 1400 ms. Each block lasted

27 s. During the 0-back condition, the participant was

asked to detect whether the current item on the screen was

a ‘‘1’’ or not. During the1-back condition, the participant

was asked to respond to the current item the same as the

last one; and in the 2-back condition, the participant was

asked to detect whether the current item had appeared two

positions back in the sequence. Each participant was

instructed to press a button with the index finger when

detecting a target. Stimuli were presented via E-Prime 2.0.

Emotion Matching (EM)

The emotional processing task with a randomized block-

design was adapted from a widely-used paradigm designed

by Hariri and colleagues [44] (Fig. 1A). This task consisted

of two conditions of both emotional and sensorimotor

control blocks. During the emotional block, each partici-

pant viewed a trio of emotional faces, and was instructed to

select one of two faces below that expressed the same

category of emotion (anger/fear) as the target face above.

During the sensorimotor control block, each participant

viewed another trio of mosaic geometric shapes (circles,

vertical and horizontal ellipses) filled by scrambled faces,

and was asked to select one of two shapes below that was

identical to the target shape above. Each block started with

a cue for 5 s indicating either the emotional or control

condition, followed by six trios of images presented

sequentially for 5 s each. Stimuli were presented via

E-Prime 2.0.

Balloon Analogue Risk Task (BART)

A modified version of the BART [45] with an event-related

design was used to map task-invoked brain activity patterns

involved in the reward and/or incentive domain. The

BART consisted of three conditions: pump, cash-out, and

explode, pending each participant’s decision choice

(Fig. 1A). During the task, each participant was shown a

virtual balloon and given the option to inflate it by pressing

the ‘pump’ button, or to stop by pressing the ‘cash-out’

button within 3000 ms. Otherwise, the balloon would

explode automatically if there was no response. Each

participant accumulated monetary rewards in a temporary

bank with each pump (1 ¥ per pump), which could be

transferred to a permanent bank by making the ‘cash-out’

decision. The balloon could explode at any moment after a

‘pump’ choice, indicating that the money accumulated in

the temporary bank would be lost. Therefore, each trial of

this task started with the presentation of a computerized

balloon and came to an end when the balloon either

exploded or the participant decided to cash-out. The

number of trials completed during this self-paced task

was not predetermined but depended on each participant’s

decisive response speed. Stimuli were presented via

E-Prime 2.0.

Imaging Data Acquisition

Whole-brain images from each participant were acquired

using the same type of Siemens 3.0T scanner (Magnetom
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Prisma syngo MR D13D, Erlangen, Germany) at two sites

with a 64-channel head coil and a T2*-sensitive echo-

planar imaging (EPI) sequence based on blood oxygenation

level-dependent contrast. Thirty-three axial slices (3.5 mm

thick, 0.7 mm skip) parallel to the anterior and posterior

commissural line and covering the whole brain were

imaged with the following parameters: repetition time (TR)

= 2000 ms, echo time (TE) = 30 ms, flip angle = 90�; voxel
size = 3.5 9 3.5 9 3.5 mm3, and field of view (FOV) = 224

9 224 mm2. In addition, high-resolution anatomical

images from each participant were acquired by three-

dimensional sagittal T1-weighted magnetization-prepared

rapid gradient echo (MPRAGE) with a total of 192 slices

(TR = 2530 ms, TE = 2.98 ms, flip angle = 7�, inversion
time = 1100ms, voxel size = 1.0 9 1.0 9 1.0 mm3,

acquisition matrix = 256 9 224, FOV = 256 9 224 mm2,

brand width = 240 Hz/Px, slice thickness = 1 mm). The

order of the four tasks was fixed for all participants: EM,

WM, ANT, and BART. The interval between tasks was

2–5 min, depending on whether participants felt that they

had enough rest between tasks. A potential order effect

would not affect task- and age-specific brain activity maps

in the present study; it would be of particular concern when

directly comparing activity patterns between different

tasks. It was not the case in the present study, because

we had no intention nor hypotheses to compare activity

maps between tasks. For the ANT task, the number of

volumes was 177, lasting 354 s; for the WM task 232

volumes and 462 s; for the EM task 179 volumes and 359 s;

and for the BART task 184 and 368 s.

Pre-processing of fMRI Data

Brain images were preprocessed using fMRIPrep 1.4.1

(RRID:SCR_016216) [42], which is based on Nipype 1.2.0

(RRID:SCR_002502) [46]. Specifically, the first 4 volumes

of each run for all tasks were discarded for signal

equilibrium and the adaptation of participants to scanning

noise. For each run per participant (across all tasks and

sessions), the following preprocessing was performed.

First, a reference volume and its skull-stripped version

were generated using a custom methodology of fMRIPrep.

Co-registration was configured with nine degrees of

freedom to account for distortions remaining in the BOLD

reference. Head-motion parameters with respect to the

BOLD reference (transformation matrices and six corre-

sponding rotation and translation parameters) were esti-

mated before any spatiotemporal filtering using mcflirt

(FSL 5.0.9). Functional images of each task were slice-time

corrected using 3dTshift from AFNI. The resultant images

(including slice-timing correction when applied) were

resampled into their original, native space by applying a

single composite transformation to correct for head-motion

and susceptibility distortions. These resampled images are

referred to as preprocessed BOLD functional images in the

original space. After that, images were resampled into a

standard space, generating a preprocessed BOLD run in the

well-known ‘MNI152NLin6Asym’ space. More details are

provided in the Supplementary Methods.

Motion artifacts were automatically removed using

independent component analysis (ICA-AROMA) of the

preprocessed images in MNI space time-series after

removal of non-steady-state volumes and spatial smoothing

with an isotropic, Gaussian kernel of 6 mm full-width half-

maximum. The head-motion estimates calculated in the

correction step were also placed in the corresponding

confounds file. The confound time series derived from

head-motion estimates and global signals were expanded

with the inclusion of temporal derivatives and quadratic

terms for each. Frames that exceeded a threshold of 0.5 mm

FD or 1.5 standardized DVARS were annotated as motion

outliers. All re-sampling was performed with a single

interpolation step by composing all the pertinent transfor-

mations (i.e., head-motion transform matrices, susceptibil-

ity distortion correction when available, and co-registration

to anatomical and output spaces). Gridded (volumetric) re-

sampling was performed using antsApplyTransforms, con-

figured with Lanczos interpolation to minimize the

smoothing effects of other kernels. More details are

provided in the Supplementary Methods.

In addition, technical details of critical processing steps

include as follows: (1) Skull stripping: brain tissue

segmentation (cortex and cerebellum) from the surround-

ing region (skull and non-brain area). (2) BOLD reference

image estimation: this workflow estimates a reference

image for a BOLD series. (3) Head-motion estimation:

using the previously estimated reference scan in step (2) to

estimate head-motion. As a result, one rigid-body trans-

form with respect to the reference image is written for each

BOLD time-step. (4) Slice-timing correction: a prepro-

cessing step applied to correct for slice-dependent delays,

achieved by shifting the time series of each slice to

temporally align all slices to a reference time-point. All

slices are realigned in time to the middle of each repetition

time (TR). (5) Susceptibility distortion correction (SDC):

one of the major problems that affects (EPI) data is the

spatial distortion caused by the inhomogeneity of the field

inside the scanner. (6) Registration: the alignment between

the reference EPI image of each run and the reconstructed

image of each participant using the gray/white matter

boundary. (7) Resampling BOLD runs onto standard spaces

(spatial normalization): a preprocessing step that involves

deforming the brain image from each participant so that it

fits a standardized (template) brain image, to remove global

differences in the size and orientation of each ‘normalized’

brain and so that the same anatomical regions in each
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image occupy the same voxels, with attendant reduced

statistical variance and increased power. More details are

provided in the Supplementary Methods.

Univariate General Linear Model (GLM)

To assess task-dependent brain responses in the ANT, WM,

EM, and BART, we constructed a GLM with separate

regressors corresponding to experimental conditions

manipulated in each of the four task domains. For the

ANT task, we modeled correct and incorrect trials sepa-

rately. For the WM and EM tasks, we could not readily

model correct and incorrect trials separately, because a

blocked rather than event-related fMRI design was used.

For the BART, there were no right or wrong trials, given

that we used a classical risk-taking paradigm with each

participant making self-choices. Instead, we modeled the

three separate phases of each risk-taking action: pump,

cash-out, and explode.

For the ANT, six conditions (no-cue, double-cue, center-

cue, spatial-cue, congruent-target, and incongruent-target)

were modeled as 6 separate event-related regressors.

Relevant contrast parameter estimate images were initially

generated at the individual-subject level, in the alerting

(double-cue vs no-cue), orienting (spatial-cue vs center-

cue), and executive (incongruent-target vs congruent-

target) conditions, and were submitted to second-level

group analysis.

For WM, three conditions (0-, 1- and 2-back) were

modeled as separate regressors. Relevant contrast param-

eter estimate images were initially generated at the

individual-subject level, in the 0-, 1- and 2-back conditions,

and were submitted to second-level group analysis.

For EM, the emotional and sensorimotor control condi-

tions were modeled as separate boxcar regressors. Relevant

contrast parameter estimate images were initially generated

at the individual-subject level, in 2 regressors (emotion and

control blocks) and the emotion vs control condition, and

were submitted to second-level group analysis. For this

task, we also constructed a GLM for different conditions

with all, as well as boys and girls separately.

For BART, three conditions (pump: making risky

decisions; cash-out: receiving rewards; explode: experi-

encing risks) were modeled as three separate event-related

regressors. Corresponding contrast parameter estimated

images, were initially generated at the individual level in

the pump, cash-out, explode conditions, and were submit-

ted to second-level group analysis.

Each model of the four task domains was convolved

with the canonical hemodynamic response function imple-

mented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/soft

ware/spm12). In addition, two global signals extracted

within the CSF and WM from each participant were

included to regress out effects related to noise. We used

high-pass filtering using a cutoff of 1/128 Hz, and correc-

tions for serial correlations in fMRI using a first-order

autoregressive model (AR (1)) in the GLM framework.

One-sample t-tests were applied in the second-level group

analysis for the four task domains to create a domain-

specific pattern of functional activation. Significant clusters

were determined using a stringent threshold of P\ 0.05

(cluster size[45) false discovery rate correction for mul-

tiple comparisons.

Moreover, we used multiple linear regression to identify

overall age-related activation maps in the whole-brain

analyses, with age as a covariate of interest and other

confounding factors (gender and site variables) as nui-

sances. For the ANT, WM, and BART domains, age was

modeled as the covariate of interest, and gender and site

variables as the confounding factors, to identify age-related

changes in activation patterns. For the EM task, age was

modeled as the covariate of interest and the site variable as

a confounding factor to identify age-related changes in

activation patterns in boys and girls. In addition, we

calculated a set of simple comparisons by using indepen-

dent sample t-tests between boys and girls in all three

conditions (emotion, control, and emotion vs control) (see

Supplementary Information).

DBFA Toolbox

Given that many tools and scripts used in the fields of

neuroimaging and brain science are based on Python, we

decided use Python to develop the DBFA toolbox in order

to connect well with freely available resources. PyQt, a

toolkit for creating graphical user interface (GUI) applica-

tions, is a successful fusion of Python programming

language and the Qt library, which is one of the most

powerful libraries at present. So we used PyQt5 ? Eric6 ?

Python 3.7 as the compilation and development environ-

ment, and then imported three packages of the QtCore,

QtGui, and QtWidgets to generate GUI component objects

such as buttons, text boxes, display boxes, and combo

boxes. Qt components reserved the slot function interfaces

to load the required functions and realize the separation of

interface and logic. After the GUI was completed, we

imported functions of neuroimage packages such as nistats

and nilearn (i.e., map_threshold, plot_stat_map, and

new_img_like) to implement customized threshold criteria

in terms of P values, the cluster-size of voxels, and the

results presented. Finally, we chose Cx-Freeze as a

packaging tool to generate the final executable program.

Several major functions were implemented in the DBFA

toolbox: (1) user-customized domain- or age-specific brain

functional activity maps; (2) user-customized task, age

range, and gender of the activity maps desired to
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download; (3) user-customized threshold criteria in terms

of P values and cluster-size of voxels, with a set of options

including uncorrected, false discovery rate, and familywise

error correction for multiple comparisons; (4) user-cus-

tomized coordinates of any brain regions desired to

display; and (5) user-customized local path to host brain

activity maps with different threshold criteria.

Results

Domain- and Age-Specific Brain Activity Patterns

Involved in Three Core Attention Processes

First, we created domain-specific brain activity maps

associated with ANT, including alerting, orienting, and

executive control. As shown in Fig. 2A, we found

prominently significant clusters in a set of widely dis-

tributed regions in the occipital, dorsal attention, ventral

attention, and cingulo-opercular systems involved in three

core attention processes in children from 7 years to 12

years old. Specifically, for alerting, we found prominent

clusters in the lateral occipital, superior parietal lobule

(SPL), frontal eye fields (FEF), and ventral frontal cortex

(VFC). For orienting, we found prominent clusters in the

temporo-parietal junction, SPL, FEF, VFC, and supple-

mentary motor area (SMA). For executive attention, we

found prominent clusters in the dorsal anterior cingulate

cortex (dACC), anterior insula (AI), FEF, and VFC. We

further created age-specific brain activity maps associated

with the three attention processes in each age group in

children from 7 years to 12 years old at one-year intervals

(11 years and 12 years old merged because of fewer

participants). As shown in Fig. 2B, activation was an

increasingly more pronounced as age increased from 7

years to 12 years in the brain systems associated with

alerting (for all three conditions, see Fig. S1A).

In addition, we created age-related brain activity maps

by using multiple regression analyses to show the rela-

tionship of task-invoked activation intensity with age. We

found positive correlations in the SPL for alerting, negative

correlations in the right FEF, right VFC, and left SMA for

orienting, and positive correlations in the right dACC, AI,

cuneus, and middle cingulate cortex for executive attention

(Fig. S1B). We also examined whether there are any

differences in head motion (mean FD) for participants at

age 10 compared to either 7, 8, 9, 11, or 12. These analyses

revealed no significant difference after Bonferroni multi-

ple-comparison correction (Table S2).

Domain- and Age-Specific Brain Activity Patterns

Involved in Executive Function Processing

We further created domain-specific brain activity maps

associated with different WM loads. As shown in Fig. 3A,

we found prominent clusters in a set of widely distributed

regions in the occipital, fronto-parietal, and cingulo-

opercular systems involved in distinct WM load (1- and

Fig. 2 Domain- and age-specific brain activity patterns for alerting,

orienting, and executive attention in children. Significant clusters

corresponding to three core attention processes superimposed onto a

2D brain surface space. A Domain-specific brain activity maps.

Lateral and medial views of significant clusters in widespread brain

regions for alerting, orienting, and executive attention. B Age-specific

brain activity maps. Lateral and medial views of significant clusters in

widespread brain regions in each age group for alerting attention (all

three conditions are provided in Fig. S1A). Color bars indicate

corresponding levels of t value.
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2-back) processes in children from 7 years to 12 years old.

Specifically, widespread brain activation in the frontal-

parietal network, including the dorsal lateral prefrontal

cortex (DLPFC), ventral lateral prefrontal cortex (VLPFC),

rostral prefrontal cortex, inferior parietal lobule (IPL),

angular gyrus, AI, caudate, and SMA, were involved in

distinct WM load (1- and 2-back) processes in children

from 7 years to 12 years old, but no activation in the IPL

and right DLPFC was involved in 0-back. We also found

the strength of brain activation in these regions increased

with the increase of WM load. We further created age-

specific brain activity maps associated with different WM

loads in each age group in children from 7 to 12 years old

at one-year intervals. As shown in Fig. 3B, we found

increasingly more pronounced activation as age increased

from 7 to 12 years in the brain systems associated with

2-back (for all three conditions, see Fig. S2A).

In addition, we created age-related brain activity maps

by using multiple regression analyses to show the rela-

tionship of task-invoked activation intensity with age. We

found positive correlations in the middle fontal gyrus and

left VFC, and a negative correlation in the cuneus for the

0-back condition; a positive correlation in the left VFC and

negative correlations in angular, cuneus, and hippocampus

for the 1-back condition; and positive correlations in the

DLPFC, SPL, SMA, and AI, and negative correlations in

posterior insula, angular, cuneus, hippocampus, posterior

cingulate cortex, and subgenual anterior cingulate cortex

for the 2-back condition (Fig. S2B).

Domain- and Age-Specific Brain Activity Patterns

Involved in Emotional Processing

We next created domain-specific activity maps associated

with emotional processing, sensorimotor control, and

emotion vs control conditions. As shown in Fig. 4A, we

found widespread activation in the amygdala, insula,

occipital, parietal, and ventral frontal cortices involved in

those three conditions in children from 7 years to 12 years

old. For all samples, and for boys and girls, we found

prominent activation in the amygdala, thalamus, occipital,

inferior parietal lobule, VFC, AI, and SMA for emotional

processing and emotion vs control conditions, plus the FEF

only in emotional processing; we found prominent activa-

tion in occipital, parietal, temporo-parietal junction (TPJ),

postcentral gyrus, FEF, VFC, AI, and SMA for the

sensorimotor control condition. We further created age-

specific activity maps associated with the three conditions

in each age group in children from 7 years to 12 years old

at one-year intervals. As shown in Fig. 4B, we founded an

increasingly more pronounced activation as age increased

from 7 years to 12 years in the systems associated with

emotional processing (for all three conditions see Fig. S3).

In addition, we created age-related brain activity maps

by using multiple regression analyses to show the rela-

tionship of task-invoked activation intensity to age. We

found positive correlations in the striatum and lateral

occipital (LO), and negative correlations in the FEF,

angular, precuneus, and middle cingulate cortex for

Fig. 3 Domain- and age-specific activity patterns for three working

memory (WM) loads in children. Significant clusters corresponding to

the different loads are superimposed onto a 2D brain surface space.

A Domain-specific brain activity maps. Lateral and medial views of

significant clusters in widespread brain regions associated with 0-, 1-,

and 2-back WM tasks. B Age-specific brain activity maps. Lateral and

medial views of significant clusters in widespread brain regions in

each age group associated with the 2-back WM condition (all three

conditions are provided in Fig. S2A). Color bars indicate correspond-

ing levels of t value.
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emotional processing; positive correlations in the AI and

SMA, and negative correlations in the angular and cuneus

for sensorimotor control processing; and positive correla-

tions in the SPL and LO, and negative correlations in the

anterior middle frontal gyrus, SMA, TPJ, and right AI for

emotion vs control conditions (Fig. S4). Independent

sample t tests revealed that boys exhibited significantly

higher activation in the subgenual anterior cingulate cortex

(sgACC) for emotion and in the sgACC and precuneus for

emotion vs control, as well as significantly lower activation

in the LO for the control condition, when compared to girls

(Fig. S6).

Domain- and Age-Specific Brain Activation Patterns

Involved in Reward Decision-Making Processing

We next created domain-specific brain activity maps

associated with different reward decision-making process-

ing. As shown in Fig. 5A, we found prominent clusters in a

set of widely distributed regions in the whole brain

involved in the pump, cash-out, and explode processes in

Fig. 4 Domain- and age-specific brain activity patterns for emotional

processing in children. Significant clusters corresponding to emo-

tional processing are superimposed onto a 2D brain surface space.

A Domain-specific brain activity maps. Lateral and medial views of

significant clusters in widespread regions associated with emotional

processing, sensorimotor control, and emotion vs control conditions in

all samples, and boys and girls separately. B Age-specific activity

maps. Lateral and medial views of significant clusters in widespread

regions in each age group associated with emotional processing

conditions in all samples (all conditions are provided in Fig. S3).

Color bars indicate corresponding levels of t value.
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children from 7 years to 12 years old. Specifically, for

pump we found prominent clusters in the LO, IPL, TPJ,

DLPFC, AI, striatum (caudate and putamen), and SMA.

For cash-out, we found prominent clusters in the LO, IPL,

TPJ, middle temporal gyrus (MTG), DLPFC, AI, and

SMA. For explode, we found prominent clusters in the LO,

IPL, TPJ, MTG, DLPFC, AI, and SMA. We further created

age-specific activity maps associated with different reward

decision-making processing in each age group of children

from 7 years to 12 years old at one-year intervals. As

shown in Fig. 5B, we found increasingly more pronounced

activation as age increased from 7 years to 12 years in

different brain systems associated with the pump process

(for all three conditions see Fig. S5A).

Finally, we created age-related brain activity maps by

using multiple regression analyses to show the relationship

of task-evoked activation intensity with age. We found

positive correlations in the SPL, VFC, SMA, striatum, right

AI and negative correlations in the middle fontal cortex and

left angular for the making risky decisions process; positive

correlations in the AI, right DLPFC, right IPL, and TPJ,

and negative correlations in the left angular and precuneus

for the receiving rewards process; and positive correlations

in the right DLPFC, right TPJ, and MTG, and negative

correlations in anterior middle fontal gyrus and cuneus for

the experiencing risk process (Fig. S5B).

Discussion

In the present study, we constructed a set of domain- and

age-specific developmental functional activity maps from a

pediatric population across four domains with multiple

cognitive and affective tasks. By implementing the latest

preprocessing pipeline, we found heterogeneous activity

patterns in widely distributed systems involved in the four

different domains attention, executive function, emotion

perception, and risky reward decision-making. There were

prominent age-related changes in task-invoked functional

activation within widespread systems from 7 years to 12

years old. Moreover, we developed the DBFA toolbox to

visualize and download these domain- and age-specific

brain activity maps with customized and standard threshold

criteria. This toolbox is publicly available from http://

www.nitrc.org/projects/dbfa, which provides ample

opportunities for future data-mining and advanced analyses

to characterize the typical neurodevelopment of children’s

cognitive and affective functions.

Generally speaking, the distinct task-invoked activity

patterns associated with the four domains in young children

coincide with the theoretical framework of domain-specific

systems involved in cognitive and affective functions

[47, 48], suggesting the emergence of heterogeneous

neurodevelopment of children’s cognitive and affective

functions as young as 7 years to 12 years old. Specifically,

the activation patterns involved in alerting were primarily

Fig. 5 Domain- and age-specific brain activity patterns for pump,

cash-out, and explode processes in children. Significant clusters

corresponding to different reward decision-making processing super-

imposed onto a 2D brain surface space. A Domain-specific activity

maps. Lateral and medial views of significant clusters in widespread

regions associated with making risky decisions (pump), receiving

rewards (cash-out), and experiencing risks (explode). B Age-specific

activity maps. Lateral and medial views of significant clusters in

widespread regions in each age group associated with the pump

condition (all conditions are provided in Fig. S5A). Color bars

indicate corresponding levels of t value.
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localized in the visual, ventral attention network, and motor

systems, similar to previous findings in adults [49–53]. But

we did not find significant cluster(s) in the thalamus in

alerting like that reported in adults [49, 50]. The activation

patterns involved in orienting were localized in the

conventional dorsal attention network and motor systems,

similar to previous findings in adults [49, 54]; and the

activation patterns in executive attention were localized in

the conventional cingulo-opercular and frontal-parietal

networks, similar to previous findings in adults [49, 50].

We found that functional activation in the FEF for the

alerting process exhibited an initial increase with age, and

then a decrease at age 10. Such a non-linear developmental

pattern of attention-related frontal function may reflect a

developmental interplay of attentional processes and other

cognitive abilities, such as reading in school-aged children,

particularly during middle and late childhood [55–58].

Specifically, 9 years –10 years is the critical period of

children’s cognitive development, and many such abilities

pertaining to attention (e.g., reading) [59–61] undergo

dramatic changes in this age range [62–64]. It is worth

noting that the decreased activation in alerting process at

ages 9-10 cannot be readily explained by developmental

changes in head motion, as we did not find significant

differences in FD for children at 10 compared to 7, 8, 9, 11,

or 12 year-olds. For working memory, the activation

patterns were primarily localized in the conventional

frontal-parietal network and among others, including the

DLPFC, VLPFC, IPL in the1- and 2-back conditions,

similar to previous findings in adults [65, 66]. For

emotional processing, the activation patterns were primar-

ily localized in the emotional and salience networks

including the amygdala and AI, similar to previous findings

in both adults and children [44, 67]. The differences

between boys and girls in the emotion task demonstrated

sex difference in the development of emotional reactivity

to facial expressions [68]. Social emotional development

theory posits that this difference most likely results from

higher social awareness in girls than in boys during

childhood [69]. Sex differences in emotional processing

highlight the sex heterogeneity of emotion-related brain

systems or networks during development, which has

important implications for understanding the etiology of

sex-specific interventions and treatments of emotion-re-

lated disorders. For reward or risky decision-making, the

activation patterns were primarily localized in the striatum

(caudate and putamen), AI, DLPFC, and anterior cingulate

cortex, concurring with triadic neurocognitive models of

reward-based risky behaviors consisting of the three

components avoidance, approach, and executive control

[70]. In addition, some activation patterns were less

pronounced in young children than in adults. This discrep-

ancy may be attributed to two major factors: application of

the latest data preprocessing and the developmental nature

of the pediatric population as discussed below. First, the

development of systems and networks in the pediatric

population becomes increasingly specialized toward

nuanced cognitive and affective functions. The less pro-

nounced activation patterns in children may explain

relatively inferior performance of various cognitive abili-

ties in children as compare to adults. Second, several

studies have shown that different preprocessing methods

may cause some differences in functional activity patterns

[71–74]. Our work used a newly developed preprocessing

pipeline named fMRIPrep [42, 75] for transparency and

reproducibility purposes.

There are several major strengths and differences in our

domain- and age-specific functional activity maps relative

to other brain templates [24–28]. First, our functional

activity maps consist of multiple task domains, which also

goes beyond the mainstay of brain templates and activity

maps derived from anatomical MRI data and single-task

paradigms, respectively. Second, our activity maps are

constructed by integrating task-dependent fMRI data with

optimized signal-to-noise ratios in state-of-the-art 3.0-T

Prisma scanners used worldwide in the most influential

human brain projects, including the Human Connectome

Project (HCP) and Adolescent Brain Cognitive Develop-

ment (ABCD) [24, 25]. Third, our activity maps are

derived from a large sample of 250 children from 7 to 12

years old, a phase of rapid and dynamic maturation which

is important for obtaining repeatable and robust accurate

descriptions of children’s brains. Fourth, by using a toolbox

named DBFA with the most commonly-used MNI-coordi-

nate space, these activity maps are publicly available,

which makes their application convenient and generaliz-

able. The domain-specific functional brain activity maps

that we constructed in this study open ample new

opportunities for mapping children’s cognitive and affec-

tive functions using pediatric neuroimaging techniques.

Recent studies suggest that approximately half of the

population fulfil the criteria for one or other psychiatric

disorder, and most of those have onset ages in childhood or

adolescence [13, 76, 77]. Constructing their neurodevel-

opmental activity maps is thus crucial for understanding

children’s typical and atypical neurodevelopment princi-

ples. These activity maps provide a set of comprehensive

reference templates for future developmental neuroimaging

studies in both healthy and clinical populations.

Converging findings from four different domains have

important implications for understanding typical and

atypical neurodevelopment of cognitive and affective

functions. This not only provides domain- and age-specific

brain functional activity maps and templates for future

developmental neuroimaging studies, but also offers the

potential to promote the development of brain-inspired
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biomarkers for the detection of those with atypical

neurodevelopment in certain domain(s). It is worth noting

that there are several limitations in our present study. First,

the functional activity maps were derived from a cross-

sectional rather than a longitudinal design. Second, the age

range in children was from 7 to 12, with no coverage over

adolescence. Expanding the age span with a longitudinal

design is required for mapping the developmental trajec-

tories from childhood to adulthood. Third, the neurobio-

logical mechanisms underlying the emergence of domain-

and age-specific differences in brain activity maps remain

elusive, and further studies are needed to address this

question.

In conclusion, our study highlights the construction of

domain- and age-specific functional activity maps across

multiple domains in school-aged children from 7 years to

12 years old, based on the application of state-of-the-art

neuroimaging techniques and sophisticated analytical

approaches. The activity maps derived from a relatively

large sample with the DBFA toolbox are publicly available

for researchers, which may provide ample opportunities for

developmental neuroimaging studies in both healthy and

diseased conditions to characterize the typical and atypical

neurodevelopment of cognitive and affective functions in

the pediatric population.
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