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a b s t r a c t 

The dynamical organization of brain networks is essential to support human cognition and emotion for rapid adap- 
tion to ever-changing environment. As the core nodes of emotion-related brain circuitry, the basolateral amygdala 
(BLA) and centromedial amygdala (CMA) as two major amygdalar nuclei, are recognized to play distinct roles 
in affective functions and internal states, via their unique connections with cortical and subcortical structures 
in rodents. However, little is known how the dynamical organization of emotion-related brain circuitry reflects 
internal autonomic responses in humans. Using resting-state functional magnetic resonance imaging (fMRI) with 
K-means clustering approach in a total of 79 young healthy individuals (cohort 1: 42; cohort 2: 37), we identified 
two distinct states of BLA- and CMA-based intrinsic connectivity patterns, with one state (integration) showing 
generally stronger BLA- and CMA-based intrinsic connectivity with multiple brain networks, while the other (seg- 
regation) exhibiting weaker yet dissociable connectivity patterns. In an independent cohort 2 of fMRI data with 
concurrent recording of skin conductance, we replicated two similar dynamic states and further found higher 
skin conductance level in the integration than segregation state. Moreover, machine learning-based Elastic-net 
regression analyses revealed that time-varying BLA and CMA intrinsic connectivity with distinct network config- 
urations yield higher predictive values for spontaneous fluctuations of skin conductance level in the integration 
than segregation state. Our findings highlight dynamic functional organization of emotion-related amygdala nu- 
clei circuits and networks and its links to spontaneous autonomic arousal in humans. 
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. Introduction 

The human brain, as an open and nuanced system, spontaneously
bounds with its dynamic nature. Such spontaneity is thought to meet
ver-changing environmental needs vital to survive, involving in a mas-
ive amount of information flows between the brain and body. Spon-
aneous activity of functional brain networks does not remain con-
tant, but undergoes dynamic fluctuations over time ( Bressler et al.,
010 ; Bassett et al., 2011 ; Braun et al., 2015 ) that are thought to re-
ect affective and/or homeostatic states along with autonomic and hor-
onal responses ( Dolan, 2002 ; Deco et al., 2011 ; Calhoun et al., 2014 ).
ysregulated intrinsic dynamics of brain networks critical for emotion
nd related behaviors have been linked to mood and anxiety disorders
s well as among other psychiatric conditions ( Sripada et al., 2012 ;
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ickart et al., 2014 ; Rashid et al., 2016 ). The amygdala lies at the core
f emotion-related brain networks to broadcast affective state infor-
ation across widespread brain regions in (para)limbic systems, emo-

ional and salience networks critical for autonomic arousal, salience de-
ection, emotion perception and regulation ( Davis and Whalen, 2001 ;
eDoux, 2003 ; Seeley et al., 2007 ; Pessoa and Adolphs, 2010 ). How-
ver, little is known about the dynamic nature of the amygdala and its
unctional circuits, and even less is known whether and how their dy-
amic features are associated with internal autonomic states in humans.

The amygdalar complex encompasses multiple anatomical subre-
ions with distinct connections that support various affective functions
 LeDoux, 2000 , 2007 ). The basolateral amygdala (BLA) and centro-
edial amygdala (CMA) are two major groups of amygdalar nuclei

hat form dedicated networks for distinct functions via their unique
arning, Beijing Normal University, Beijing, China. 
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attern of interactions with other cortical and subcortical structures
 LeDoux, 2000 , 2007 ). These structures include the insular complex crit-
cal for autonomic arousal, visceral sensations, and interoceptive pro-
essing ( Craig, 2009 ; Pessoa and Adolphs, 2010 ), the anterior cingu-
ate cortex responsible for salience detection and executive attention
 Critchley, 2005 ), the inferior temporal cortices responsible for per-
eptual processing of emotional stimuli ( Hermans et al., 2014 ), and
he lateral and orbital prefrontal cortex critical for regulation of emo-
ions ( Machado et al.,2009 ). Within the past decade, there has been
reat progress in functional neuroimaging techniques that allows re-
earchers to map spontaneous functional coupling of the amygdalar
uclei with large-scale brain networks in humans ( Roy et al., 2009 ;
alzman et al., 2010 ; Qin et al., 2012 ; Sladky et al., 2015 ). Seed-based
orrelation analysis of spontaneous brain activity has been the main-
tay of conventional approaches for examining intrinsic functional orga-
ization of large-scale brain networks including amygdala-based emo-
ional networks ( Roy et al., 2009 ; Uddin et al., 2009 ). This provides
seful information to identify specific target networks with the BLA
nd CMA, but offers insufficient insight into how these networks dy-
amically organize over time to regulate the brain’s affective functions.
hus, novel approaches from a dynamic and nonstationary systems per-
pective are required to mitigate this limitation. Beyond simple scan-
ength averages (so-called static methods), recent emerging innovative
pproaches by capturing time-varying properties of connectivity from a
ystems level have begun to illustrate the dynamic nature of spontaneous
rain activity across large-scale networks (i.e., brain state) in humans
 Hutchison et al., 2013 ; Calhoun et al., 2014 ). However, the dynamical
rganization of functional brain networks associated with the amygdalar
uclei still remains open. 

There is now increasing evidence converging onto that the dynamic
ature of brain functional organization is regulated by the ascending
euromodulatory systems such as locus coeruleus (LC) releasing nora-
renaline by acting on widespread brain networks to alter the neuronal
xcitability and drive the integration of distributed neurons ( Aston-
ones and Cohen, 2005 ). Indeed, the dynamics of network topology has
een linked to autonomic arousal levels varying as a function of fir-
ng patterns of LC neurons ( Aston-Jones and Cohen, 2005 ; Eldar et al.,
013 ; Shine et al., 2018 ). In particular, the amygdalar nuclei, includ-
ng BLA and CMA, constitute a large amount of neurotransmitter recep-
ors which could transiently modulate neuronal excitability of the infor-
ation processing through their projections to specific target circuits

nd networks ( LeDoux, 2007 ). Critically, one recent study in rodents
hows that amygdala neuronal ensembles dynamically encode affective
r homeostatic internal states, through two major populations of neu-
ons of the basal nucleus of the amygdala that widely broadcasts internal
tate information via several output pathways to larger brain networks
 Gründemann et al., 2019 ). Despite differences in neuroanatomical and
eurochemical properties of the amgydala nuclei between rodents and
umans ( Pabba et al., 2013 ), recent studies from human functional neu-
oimaging have also demonstrated a link between the brain’s intrinsic
unctional activity and physiological fluctuations of autonomic arousal.
or instance, one study found that connectivity changes in the amygdala
nd dorsal anterior cingulate cortex (dACC) with a set of regions includ-
ng brainstem, thalamus and putamen as well as dorsolateral prefrontal
ortex appear to covary with heart rate variability (HRV) ( Chang et al.,
013 ). Another study found that spontaneous activity in the posterior
ingulate cortex (PCC) of default mode network (DMN) and the anterior
ingulate cortex (ACC) and anterior insular (AI) of task-positive net-
ork (TPN) also covaries with non-specific skin conductance response
t resting state ( Fan et al., 2012 ). Recently, a study observed dynamic
uctuations of amygdala functional connectivity relevant to physiologi-
al arousal observed in a fear conditioning paradigm ( Baczkowski et al.,
017 ). Yet, how the dynamical organization of large-scale networks as-
ociated with the amygdalar nuclei reflects internal autonomic states in
umans remains unknown. 
2 
Here we addressed the above open questions by investigating time-
arying connectivity patterns of functional circuits associated with the
wo major amygdalar nuclei (i.e., BLA, CMA) and their links to internal
utonomic responses in a total of 79 young healthy adults across two in-
ependent cohorts. Using resting-state (8 min) functional magnetic res-
nance imaging (fMRI), we first examined time-varying intrinsic func-
ional connectivity properties of the BLA and CMA and their network
onfigurations in Cohort 1 ( N = 42). The prior observer-independent cy-
oarchitectonically determined probabilistic maps were used to define
he BLA and CMA masks ( Amunts et al., 2005 ; Eickhoff et al. 2005 ).
he conventional sliding-window approach was implemented to cap-
ure time-varying spontaneous functional connectivity of coupling and
onnected networks of regions ( Sako ğlu et al., 2010 ; Allen et al., 2014 ;
hen et al., 2016 ). K-means clustering method, as one of the unsuper-
ised machine-learning algorithms, was used to identify dissociable con-
ectivity states that are referred as time-varying BLA- and CMA-based
ntrinsic functional network configurations among multiple brain re-
ions. Resting-state fMRI (8 min) data from a second independent co-
ort of 37 participants with higher spatial resolution were used to gain a
etter localization of the amygdala nuclei and ensure the reproducibility
nd robustness of the observed dynamic states. We further implemented
lastic-net regression to examine whether time-varying connectivity
atterns of the amygdalar nuclei are predictive of automimic arousal
easured by skin conductance levels. Based on the neurophysiological
odels of network dynamics and autonomic arousal ( Critchley, 2005 ;
oung et al., 2017 ; Shine et al., 2018 ), we predict that intrinsic func-
ional connectivity patterns associated with the two major amygdala nu-
lei would undergo dissociable time-varying states and such dynamics
ould further be associated with spontaneous autonomic responses. 

. Methods and materials 

.1. Participants 

This study included a total of 79 young healthy participants from
wo independent cohorts. The first cohort consisted of 42 young healthy
articipants (mean age ± SD: 22.62 ± 0.99 years ranged from 21 to 24,
7 females) after dropping out invalid participants because of exces-
ive head motion ( Cohort 1 ). A second independent cohort of 37 adults
atched in age and sex (mean age ± SD: 22.08 ± 1.65 years ranged

rom 20 to 25, 18 female) was recruited to undergo fMRI with the con-
urrent recording of skin conductance ( Cohort 2 ). All of the participants
eported no history of any neurological or psychiatric disorders, and no
urrent use of any medication or recreational drugs. The experiment and
rocedures were approved by the Institutional Review Board for Human
ubjects at Beijing Normal University in accordance with the standards
f the Declaration of Helsinki. Written, informed consent was obtained
rom all participants before the experiment. 

.2. Imaging acquisition 

For Cohort 1 , brain images were acquired from a Siemens 3T scan-
er (Siemens Magnetom Prisma syngo MR D13D, Erlangen, Germany)
ith a 64-channel phased-array head coil in Peking University. Par-

icipants were instructed to keep their eyes open and remain still for
 period of 8 min resting-state fMRI scan. T2-weighted images were
ecorded using an echo-planar imaging (EPI) sequence, with 177 vol-
mes (axial slices, 33; slice thickness, 3.5 mm; volume repetition time,
R, 2000 ms; echo time, TE, 30 ms; flip angle, 90; voxel size, 3.5 × 3.5
3.5 mm; field of view, FOV, 224 × 224 mm). High-resolution anatomi-

al T1-weighted images were collected using three-dimensional sagittal
1-weighted magnetization-prepared rapid gradient echo (MPRAGE) se-
uence (192 slices; TR, 2530 ms; TE, 2.98 ms; slice thickness, 1 mm; flip
ngle, 7°; voxel size, 0.5 × 0.5 × 0.5 mm; FOV, 256 × 256 mm). 
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For Cohort 2 , whole-brain imaging data were collected on a 3T
iemens Prisma MRI system in Peking University. Participants were in-
tructed to keep their eyes open and remain still for a period of 8 min
esting-state fMRI scan. Functional images were collected using a multi-
and echo-planar imaging (mb-EPI) sequence (slices, 64; slice thickness,
 mm; TR, 2000 ms; TE, 30 ms; flip angle, 90°; multiband accelerate fac-
or, 2; voxel size, 2.0 × 2.0 × 2.0 mm; FOV, 224 × 224 mm). Structural
mages were acquired through three-dimensional sagittal T1-weighted
agnetization-prepared rapid gradient echo (MPRAGE) sequence (192

lices; TR, 2530 ms; TE, 2.98 ms; slice thickness, 1 mm; voxel size,
.0 × 1.0 × 1.0 mm, interpolated to 0.5 × 0.5 × 0.5 mm; flip angle, 7°;
nversion time, 1100 ms; FOV, 256 × 256 mm). Field map images were
cquired with grey field mapping sequence (64 slices; TR, 635 ms; TE1,
.92 ms; TE2, 7.38 ms; slice thickness, 2 mm; voxel size, 2.0 × 2.0 × 2.0
m; flip angle, 60°; FOV, 224 × 224 mm). 

.3. Imaging preprocessing 

Functional imaging preprocessing was performed using tools
rom Statistical Parametric Mapping SPM12 ( http://www.fil.ion.
cl.ac.uk/spm ). For Cohort 1 , the first five volumes were discarded
or signal equilibrium. Images were then firstly corrected for distor-
ions related to magnetic field inhomogeneity. Subsequently, these func-
ional images were realigned for rigid-body motion correction and cor-
ected for slice acquisition timing. Each participant’s images were then
o-registered to each participant’s gray matter image segmented from
orresponding high-resolution T1-weighted image, spatially normal-
zed into a standard stereotactic Montreal Neurological Institute (MNI)
pace and resampled into 2-mm isotropic voxels. Finally, images were
moothed by an isotropic three-dimensional Gaussian kernel with 6 mm
ull-width at half-maximum. 

.4. Skin conductance (SC) recording and analysis 

Skin conductance data in Cohort 2 ( N = 37) were recorded simul-
aneously with fMRI scanning using an MRI-compatible Biopac MP 150
ystem (Biopac, Inc., Goleta, CA). Two Ag/AgCl electrodes filled with
sotonic electrolyte medium were attached to the center phalanges of
he index and middle fingers of the left hand, connecting to a Biopac
SR100C module. The gain set to 5, and the high pass filters set to DC.
ata were acquired at 1000 samples per second. 

.5. Skin conductance level (SCL) preprocessing 

SCL data from all participants were first inspected to ensure com-
lete SCL recording and exclude incomplete SCL recordings due to mal-
unctioning of machine or missing of start(end) triggers when scanning.
econd, we excluded participants with relatively large motion artifacts
nd other related factors that could distorted the quality of SCL data.
ext, according to the procedures by previous studies ( Boucsein et al.,
012 ; Braithwaite et al., 2013 ), we conducted five sequential opera-
ions as follows: (1) A cut off low pass filter at 10 Hz to remove high
requency noise, (2) A detrending operation to move the slow-drift, (3)
own-sampling the SCL by averaging data points within each 2 sec, (4)
ach data normalized by dividing its standard deviation, (5) Window-
veraged SCL time points in corresponding to each state-wise functional
onnectivity. Finally, to avoid potential subjectivity when determining
xclusion SCL time series, we also conducted additional analyses by in-
luding 7 participants who were excluded according to the second pro-
edure mentioned above. According to our research questions and above
rocessing procedures, our present study focused on a relatively slow,
onic-like component of skin conductance level (SCL) fluctuations rather
han phasic component of skin conductance response (SCR). 
3 
.6. Regions of interest (ROIs) definition 

Four ROIs encompassing the BLA and CMA for each hemisphere
ere created separately using cytoarchitectonically defined probabilis-

ic maps of the amygdala. Maximum probability maps were used to cre-
te nonoverlapping amygdala subregions using the Anatomy Toolbox
 Eickhoff et al. 2005 ). Voxels were included in the maximum probabil-
ty maps only if the probability of their assignment to the BLA or CMA
as higher than any other nearby structures. Each voxel was exclusively
ssigned to only one region. Overlapping voxels were assigned to the
egion that had the greatest probability, resulting in two nonoverlap-
ing ROIs representing CMA and BLA subregions for each hemisphere.
ased on previous studies ( Qin et al., 2012 ), we selected the five tar-
et networks of interest defined in the AAL atlas ( Fig. 1 D ). These target
etworks include (1) subcortical structures including striatum, thalamus
nd midbrain; (2) crus and vermis/declive regions of the cerebellum; (3)
ni- and polymodal association cortex including sensory and motor ar-
as that consist of visual cortex (VC), parahippocampal gyrus (PHG),
nferior temporal cortex (ITC), middle (MTG) and superior temporal
yrus (STG), premotor cortex (PMC) and sensorimotor cortex (SM); (4)
imbic and paralimbic structures including hippocampus (Hipp), insula
Ins), middle (mCC) and posterior (PCC) portions of cingulate cortex;
nd (5) prefrontal cortex including anterior cingulate cortex (ACC), mid-
le (MFG) and inferior frontal gyrus (IFG), and medial prefrontal cortex
MPFC). The rationale of selection for these networks of interest are de-
icted in Table. S1 . 

.7. Functional connectivity analysis 

Time series of each seed (averaging across all voxels within ROI)
ere filtered with a bandpass temporal filter (0.008 to 0.10 Hz) and

xtracted. Six motion parameters, cerebrospinal fluid and white matter
f each participant that account for potential physiological noise and
ovement-related artifacts were regarded as covariates of no interest.

ubsequently, the resultant time series were demeaned. For each par-
icipant, two separate functional connectivity analyses were performed
or both BLA and CMA seed separately and significant clusters were de-
ermined using a height threshold of p < 0.001 and an extent thresh-
ld of p < 0.05 corrected for multiple comparisons. To further investi-
ate regions exhibiting different functional connectivity with BLA and
MA-seed, the contrast parameter images for each of the four seed ROIs

rom the individual level analyses were submitted to a second-level
roup analysis by treating participants as a random variable in a 2-by-
 ANOVA with amygdala subregions (BLA vs. CMA) and hemispheres
left vs. right) as within-subject factors. Significant clusters were deter-
ined using a height threshold of p < 0.001 and an extent threshold of p
 0.05 corrected for multiple comparisons. For later K-means analyses,

arget ROIs of each seed were defined by the combination of signifi-
ant clusters exhibiting main effects of BLA vs CMA in ANOVA analyses
nd 20 regions of interest derived from anatomically-defined AAL at-
as. Subsequently, both times series of each seed and associated target
OIs were extracted by the same procedure mentioned above. And Pear-
on’s correlation coefficients, representing the strength of functional
onnectivity of each seed with corresponding target masks, were com-
uted between amygdala subregion-seeded time series and target time
eries. 

For replication purpose, we also defined 20 ROIs using an indepen-
ent finer-grained AICHA atlas (Joliot et al., 2015), except for three ROIs
ocating at the midbrain, crus and vermis. Because there are no corre-
ponding parcellations for these three ROIs in the AICHA atlas and we
imply used these three ROIs defined by the AAL atlas. Notably, all tar-
et ROIs were implemented without combination in replication analyses
o test robustness of state clustering results. Thereafter, parallel analyses
ere conducted for our fMRI data from Cohort 1 to Cohort 2 . 

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. An overview of time-varying intrinsic functional connectivity of BLA- and CMA-based target networks by sliding window and K-means clustering. 

( A ) A coronal view of the BLA (blue) and CMA (red) seeds. ( B ) Lateral views of significant clusters in widespread brain regions showing intrinsic functional connectivity 
with the BLA and CMA seeds. ( C ) Brain regions showing significant clusters exhibiting the main effects of BLA vs. CMA. ( D ) Representative views of the anatomically 
defined five target networks of interest. ( E ) An illustration of K-means cluster analysis. Connectivity between BLA/CMA seed regions and 20 target regions from 

five networks of interest were computed in each window. Then, K-means clustering was conducted on window sequence. Notes: L, left; R, right; BLA, basolateral 
amygdala; CMA, centromedial amygdala; mCC, middle portions of cingulate cortex; PCC, posterior portions of cingulate cortex; VC, visual cortex; ITC, inferior 
temporal cortex; MTG, middle temporal gyrus; STG, superior temporal gyrus; PMC, premotor cortex; SM, sensorimotor cortex; ACC, anterior cingulate cortex; IFG, 
inferior frontal gyrus; MPFC, medial prefrontal cortex; MFG, middle frontal gyrus. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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.8. Time-varying functional connectivity analysis and K-means clustering 

Time-varying functional connectivity was assessed by using a widely
sed sliding-window approach ( Sako ğlu et al., 2010 ; Bassett et al., 2011 ;
llen et al., 2014 ; Shine et al., 2016 ) in MATLAB R2015b (MathWorks,
atick, USA). The entire temporal time series were divided into a series
f windows with a specific window length ( α = 40 TR) and step ( β =
 TR). The total quantity of windows was defined by a parameter 𝑊 , 

 = 

[
( T − −α) ∕β

]
+ 1 

here T is a total number of time points. Initial point S for each window
 was defined as: 

 𝑖 = 1 + ( 𝑖 − 1 ) β, 𝑖 = 1 , … , 𝑊 

hile endpoint E was defined as: 

 𝑖 = ( 𝑖 − 1 ) β + α, 𝑖 = 1 , … , 𝑊 

For state clustering, a brain state here is referred to specific con-
gurations of time-varying intrinsic functional connectivity of the BLA
nd CMA seeds with 20 target ROIs defined above. We first computed
earson’s correlation coefficients between BLA and CMA seed and as-
ociated target ROIs within each time window. Each participant’s BLA-
nd CMA-seed functional connectivity within each time window was
hen transformed into one-dimensional vectors. Next, K-means cluster-
ng of windowed correlation matrices was implemented to identify dif-
erent states of dynamics of BLA- and CMA-based intrinsic functional
onnectivity. The algorithm was repeated with 1000 random iterations
o exclude the sensitivity of K-means to initial conditions. 

A paramount step of clustering analysis is determining the optimal
arameter set ( K, α, β) . Various parameter sets were attempted to ful-
ll this goal ( 𝐾 = 2 − 15 , sliding window length α = 30 − 50 TRs , step
4 
= 1 . 0 − 3 . 0 TRs ). The optimal parameter sets were obtained after eval-
ation of silhouette coefficient ( Rousseeuw, 1987 ) and CalinskiHarabasz
riterion ( Cali ń ski and Harabasz, 1974 ), in which higher value indicates
arger cohesion and less dispersity. 

.9. Time-lagged cross-correlation (TLCC) analysis for dynamic states 

We implemented time-lagged cross-correlation (TLCC) to investigate
emporal coherence between BLA and CMA intrinsic target networks in
ifferent states ( Adhikari et al., 2010 ). We first concatenated all of time-
arying windows for BLA- and CMA-based intrinsic connectivity with 20
arget ROIs across participants for each state, separately. We then av-
raged window-wise series of BLA- and CMA-based intrinsic connectiv-
ty separately, for each state. Thereafter, we calculated TLCC between
veraged BLA and CMA connectivity windows with a lag range from
40 to 40. To calculate TLCC on finer-grained level, we further divide
hole window series of averaged BLA and CMA-based connectivity into

pochs, with each epoch length setting at 80. Then, TLCC was computed
nder each epoch separately with the same lag range from -40 to 40. We
efine the result based on this procedure as TLCC (finer-grained). 

.10. Machine learning-based prediction analysis 

To examine whether dynamic states, featured by their time-varying
unctional networks of BLA- and CMA seeds, can be robustly linked to
ngoing SCL fluctuations, two Elastic-net regression models with 10-fold
ross validation were implemented for detected states separately. For
ach model, a total of 40 dynamic connections were extracted as a fea-
ure vector (i.e., 1 × 40 vector) and corresponding window-average SCL
xtracted as a response variable at each temporal window. The Statistics
nd Machine Learning Toolbox in MATLAB 2015a (MathWorks, Natick,
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SA) was used to perform the Elastic net regression (Boyd S., 2010).
lastic-net model earns the benefits of excluding little-contributed vari-
bles while reducing overfitting problem by implementing L1 and L2-
egularization in the model (controlled by parameter 𝛼 and 𝜆). To de-
ermine the optimal parameter set ( 𝛼, 𝜆) for the Elastic-net regression
odel, we applied a grid search with 𝛼 chosen from 20 values in the

ange of [0.05, 1.0] and 𝜆 chosen from 100 values using a default
ambda sequence pre-defined in Statistics and Machine Learning Tool-
ox. Then, 10-fold cross-validation was applied to examine the perfor-
ance of Elastic-net regression at different parameter settings. Finally,

 𝛼, 𝜆) with minimum cross-validation error plus one standard deviation
as selected for later analysis ( Tsankov et al., 2015 ). 

To determine the significance of predictive accuracy for Elastic-Net
egression models, we employed a stringent permutation test to account
or temporal autocorrelations present in spontaneous BOLD signal fluc-
uations and SCL time series ( Kauppi et al., 2010 ). For each state, we
ircularly shifted both window-wise BLA/CMA-based connectivity series
ithin each state and corresponding SCL time series in the same state in
 random manner, on an individual level. We then trained Elastic-net re-
ression models using the permuted data across participants on a group
evel. The total number of permutation times for each state was set to
000. The p values of the mean correlation r were calculated by dividing
he number of permutations that showed a higher value than the actual
alue for the real sample by the total number of permutations. To test
he difference of prediction accuracy for SCL among states, a bootstrap-
ing method was implemented. Specifically, we conducted repeated re-
ampling from time-varying connectivity vectors and their correspond-
ng window-wise SCL value for each state separately. Then, we trained
lastic-net models under bootstrapped data with the same hyperparam-
ters settings in Fig. S10 . Next, Pearson’ correlation was implemented
o estimate the correlation between predicted SCLs and observed SCLs.

e thus created the simulated distribution of Pearson’s correlation be-
ween observed and predicted SCLs for each state respectively. Finally,
wo sample t tests were employed to compare the differences of distribu-
ions (Fisher-z transformed). The resample times for bootstrapping were
et to 5000 and the population size for each resample was set to 1500.
inally, prediction weights among BLA and CMA target network links
ere further analyzed and visualized by BrainNet Viewer ( Xia et al.,
013 ). 

. Results 

.1. Time-varying intrinsic functional connectivity patterns of the BLA and 

MA 

We first conducted separate seed-based functional connectivity anal-
ses for the BLA and CMA seeds ( Fig. 1 A ). As shown in Fig. 1 B , we ob-
erved a set of widespread brain regions whose spontaneous activity is
ignificantly correlated with the BLA and CMA seeds, with overlapping
egions in the insula and the medial frontal cortex as well as anterior
nd middle portions of cingulate cortex ( Fig. S1 ). To further examine
he differences between BLA and CMA target networks, we conducted
hole-brain 2-by-2 ANOVA with subregions (BLA vs. CMA) and hemi-

pheres (left vs. right) as within-subject factors to identify significant
lusters exhibiting the main effects of BLA vs. CMA ( Fig. 1 C ) . Criti-
ally, we observed prominently dissociable patterns of BLA and CMA
arget connections, involving widespread cortical and subcortical struc-
ures. Together with findings from previous studies ( Roy et al., 2009 ;
tkin et al., 2009 ; Qin et al., 2012 ), we selected 20 ROIs from five tar-
et networks of our major interest in a set of widely distributed network
see Methods), including (1) limbic and paralimbic structures, (2) uni-
nd polymodal association cortex, (3) subcortical structures, (4) Cere-
ellum and (5) prefrontal cortex. The rationale of selection for five target
etworks of interest is depicted in Fig. 1 D and Table. S1. 

We then examined time-varying intrinsic functional connectiv-
ty properties of 20 target ROIs within five major networks associ-
5 
ted with the BLA and CMA, by implementing a sliding window ap-
roach in conjunction with K-means clustering methods ( Fig. 1 E ).
he optimal number of clusters were determined by Silhouette coef-
cient ( Rousseeuw, 1987 ) and CalinskiHarabasz criterion ( Cali ń ski and
arabasz, 1974 ), with higher value indicating larger cohesion and less
ispersity. This analysis revealed the highest scores for both Silhouett
oefficient and CalinskiHarabasz criteria at cluster numbers set as 2 ( Fig.

2 ). To ensure the stability of time-varying intrinsic functional connec-
ivity and the reliability of clustering, we additionally computed the two
etrics using a set of window length ( α) and steps ( β) varying from 30 to
0 TRs and 1 to 3 TRs, respectively. We consistently found optimal states
t 2 ( Fig. S2 ). We also tested whether BLA and CMA seeds in the two
emispheres showed distinct intrinsic connectivity with target regions
r not. Again, we observed a highly similar pattern of results even sep-
rating seeds of BLA and CMA for each hemisphere ( Fig. S3 ). Together,
hese results revealed consistent patterns of outcomes, with two clearly
issociable states of time-varying BLA and CMA intrinsic connectivity
atterns ( Fig. 2 A ). 

.2. Integration and segregation states linking to distinct tempo-spatial BLA

nd CMA connectivity patterns 

Next, we examined tempo-spatial connectivity patterns of the BLA
nd CMA seeds with target ROIs. As shown in Fig. 2 A , K-means cluster-
ng robustly detected two distinct states, with one state (denoted as State
) exhibiting generally stronger connectivity strength of both BLA and
MA with target ROIs compared with the other state (denoted as State
) exhibiting significantly weaker yet dissociable connectivity between
LA and CMA seeds. We then calculated occupancy rate of these two
tates, and found two states underwent highly time-varying or dynamic
hanges ( Fig. S4 ). To compare intrinsic functional strength of BLA and
MA-target networks within and between States 1 and 2 ( Fig. 2 B) , we
onducted separate independent t tests for averaged functional connec-
ivity (Fisher-z transformed) across windows. Results revealed signifi-
antly higher BLA-based connectivity strength than that of CMA, in both
tate 1 [t (4193) = 46.51, two tailed p < 0.001] and State 2[t (4037) = 50.10,
wo tailed p < 0.001]. This pattern of differences is consistent with pre-
ious findings in adults ( Roy et al., 2009 ; Qin et al., 2012 ). More in-
erestingly, we found both BLA-associated and CMA-associated connec-
ivity in State 1 are significantly higher than that in State 2 [separate
ndependent t tests, BLA: t (8230) = 77.82, two tailed p < 0.001; CMA:
 (8230) = 107.16, two tailed p < 0.001]. Additionally, these results could
e replicated from edge-by-edge comparisons ( Tables S2, S3). Overall,
hese results indicate distinct difference between the two states, as one
howing higher amygdala subregional connectivity with widespread tar-
et regions in cortical areas and subcortical structures than the other. 

We further investigate spatial similarity and temporal coherence be-
ween BLA and CMA target networks within each state. We first cal-
ulated spatial similarity between BLA and CMA target networks for
he two states, measured by Pearson correlation values (Fisher’s r-to-z
ransformed) between BLA and CMA-target connectivity across windows
 Fig. 2 C ). This analysis revealed significantly higher spatial similarity
etween BLA and CMA target networks in State 1 ( r = 0.58), when com-
ared to that in State 2 [ r = 0.32, two sample t -test, t (8230) = 20.47,
wo tailed p < 0.001]. We then calculated time-lagged cross-correlation
TLCC) between BLA and CMA target networks (see Methods). We con-
istently found higher correlation around lag of zero ( Fig s . 2 D, S5) . Fur-
her test on TLCC (finer-grained) at lag of zero revealed significantly
igher correlation between BLA and CMA target networks [separate in-
ependent t test, t (65) > 3.06, two tailed p = 0.003 corrected] ( Fig. 2 E ).
otably, all p -values above are FDR corrected for multiple comparisons.
e also tested the robustness of results by implementing another finer-

rained AICHA atlas (see Methods) and consistently found two distinct
tates with highly similar tempo-spatial patterns above ( Figs. 2 F, S6 ). 

We further tested whether the two distinct states are reproducible
n an independent cohort of participants ( Cohort 2 ) using the same tar-
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Fig. 2. Time-varying integration and segregation states related to distinct spatial-temporal patterns for BLA and CMA connectivity networks (Cohort 1). 

( A ) Polar plots depict two distinct states, with generally stronger connectivity strength of both BLA (blue) and CMA (red) with target ROIs for integration state, 
while significantly weaker yet dissociable connectivity between BLA and CMA seeds. ( B ) Bar graphs show significant difference in averaged connectivity strength 
(Fisher-z transformed) between BLA- (blue) and CMA-based target regions (red) within and between each state. ( C ) Bar graphs shows averaged correlation of BLA- 
and CMA-target connectivity networks (similarity) within State 1 and State 2. ( D ) The curves depict time-lagged cross-correlations (TLCC) between BLA and CMA 

target networks for State 1 and State 2 respectively. ( E ) The curves depict averaged TLCC (finer-grained) along with standard error of the mean for State 1 and State 
2 separately. Gray area marks the significant difference between state 1 and state 2 at lag of zero. ( F ) Reproducible dynamic states using a set of independently 
defined ROIs from the AICHA atlas. Notes: ∗ P < 0.05; ∗ ∗ P < 0.01; ∗ ∗ ∗ P < 0.001, FDR corrected. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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et ROI masks derived from Cohort 1. Again, we found highly similar
wo distinct states, with one state exhibiting integrated patterns between
LA and CMA-target ROIs compared with the other state ( Fig. 3 A ) To be
pecific, we observed significantly higher BLA and CMA intrinsic con-
ectivity strength in State 1 than that in State 2 [separate independent t
ests, BLA: t (7435) = 100.64, two tailed p < 0.001; CMA: t (7435) = 90.42,
wo tailed p < 0.001] ( Fig. 3 B ). Further independent t tests for aver-
ged intrinsic connectivity across windows (Fisher-z transformed) re-
ealed significantly higher BLA-based connectivity strength than that of
MA, in both integration state [t (2924) = 44.19, two tailed p < 0.001]
nd segregation state [t (4511) = 41.21, two tailed p < 0.001] ( Fig. 3 B ).
e also found significantly higher spatial similarity [two sample t -test,

 (7435) = 16.17, two tailed p < 0.001] ( Fig. 3 C) , and higher TLCC around
ag of zero ( Fig. 3 D, Fig. S7 ). Consistently, test on TLCC (finer-grained)
t lag of zero revealed significantly higher correlation between BLA and
MA target networks [separate independent t test, t (59) > 3.44, two
ailed p = 0.001 corrected] ( Fig. 3 E ). Notably, these results were re-
roducible by using another finer-grained AICHA atlas in both Cohorts
 and 2 ( Figs. 3 F, S8 ). 

Together, by implementing sliding-window approach with K-means
lustering method, we found a clear dissociation of tempo-spatial evolu-
ion patterns for BLA- and CMA-based intrinsic connectivity within two
tates. Based on a generally higher BLA- and CMA-based intrinsic con-
ectivity with all of target networks for State 1 and relatively weaker yet
issociable connectivity patterns for State 2, we therefore denote them
s integration and segregation state respectively for the present study. 

.3. Time-varying states of BLA and CMA connectivity predict spontaneous

utonomic arousal 

After detecting two dynamic states of amygdala subregions net-
orks, we further investigated whether they could be robustly linked to
6 
pontaneous autonomic arousal, measured by tonic-like component of
kin conductance level (SCL). We implemented Cohort 2 ( N = 37) with
oncurrent recordings of spontaneous SCL accompanying with above
etected dynamic states of BLA and CMA target networks. We first pre-
rocessed SCL data (see Methods) and excluded 7 participants based
n the criteria stated in the Methods above and Fig. S9 . To test the re-
oving out effect, we also conducted additional analysis by including

ll of participants. We first conducted two independent sample t tests
nd revealed significantly higher SCL in integration than that in segre-
ation state [separate t-test, before exclusion: t (7435) = 3.84, p < 0.001;
fter exclusion: t (6028) = 3.23, p = 0.0012] ( Fig. 4 A) . 

Furthermore, we implemented Elastic-net regression ( Zou et al.,
005 ; Cui et al., 2018 ) to examine whether time-varying functional con-
ectivity networks of BLA and CMA seeds could be predictive of ongo-
ng SCL fluctuations. Two Elastic-net regression models were trained
or BLA and CMA-based intrinsic connectivity data for time-varying
indows within integration and segregation states separately. Each
indow-wise connectivity from integration and segregation states is

onsidered as a function of concurrent recordings of window-wise SCL
alue ( Fig. 4 B ). As mentioned in Methods, we employed grid-search for
etermining optimal parameter set ( 𝛼, 𝜆) ( Fig. S10 ). Then, to determine
he significance level for predictive accuracy in Elastic-net models, we
mployed a stringent permutation test to control autocorrelations in-
erent in functional connectivity metrics and SCL time series (see Meth-
ds). Outcomes from the permutation tests revealed prominent correla-
ions between the predicted and observed spontaneous SCL fluctuations
ithin integration state [before exclusion: r = 0.59, permutated p = 0.02;
fter exclusion: r = 0.64, permutated p = 0.08]. However, we did not
bserve this association for segregation state [before and after exclu-
ion: permuted p = 0.12 and p = 0.20, respectively] ( Fig. 4 C, D ). When
mplementing conventional permutations, associations of time-varying
LA/CMA connectivity with spontaneous SCL fluctuations were both
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Fig. 3. Reproducible results for integration and segregation states with distinct spatial-temporal patterns for BLA and CMA intrinsic connectivity networks 

in Cohort 2. ( A ) Polar plots depict two distinct states, with generally stronger connectivity strength of both BLA (blue) and CMA (red) with target ROIs for integration 
state, while significantly weaker yet dissociable connectivity between BLA and CMA seeds. ( B ) Bar graphs show significant difference in averaged connectivity strength 
(Fisher-z transformed) between BLA- (blue) and CMA-based target regions (red) within and between each state. ( C ) Bar graphs shows averaged correlation of BLA- 
and CMA-target connectivity networks (similarity) within State 1 and State 2. ( D ) The curves depict time-lagged cross-correlations (TLCC) between BLA and CMA 

target networks for State 1 and State 2 respectively. ( E ) The curves depict averaged TLCC (finer-grained) along with standard error of the mean for State 1 and State 
2 separately. Gray area marks the significant difference between state 1 and state 2 at lag of zero. ( F ) Reproducible dynamic states using a set of independently 
defined ROIs from the AICHA atlas. Notes: ∗ P < 0.05; ∗ ∗ P < 0.01; ∗ ∗ ∗ P < 0.001, FDR corrected. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 4. Time-varying integration and segregation states linking to spontaneous skin conductance level (SCL). ( A ) Bar graphs depict significant differences in 
skin conductance levels between integration and segregation states before and after exclusion of 7 participants. ( B ) An example of dynamic functional connectivity 
for integration and segregation states as a function of spontaneous SCL fluctuations from one participant. ( C ) Scatter plots show correlations between predicted 
and observed SCL values for two states with exclusion of 7 participants ( N = 30). Predicted SCL value are derived from Elastic-net regression for integration and 
segregation states respectively. Shaded areas represent 95% confidence interval. ( D ) Same plot with C but without exclusion of 7 subjects ( N = 37). Notes: ∗ P < 0.05; 
∗ ∗ P < 0.01; ∗ ∗ ∗ P < 0.001. 

7 
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Fig. 5. Prediction weights and spatial distributions of BLA and CMA target network configurations linking to spontaneous SCL fluctuations ( N = 30). (A) 

Bar graphs depict coefficients derived from Elastic-net model, for integration (top) and segregation (bottom) state separately. ( B ) Pie charts represent relative ratio 
of total prediction weights between BLA- and CMA-target connections in Elastic-net model, for integration (top) and segregation (bottom) state separately. ( C ) Top 
25% predictive connections of BLA- (blue) and CMA-based (red) target networks in integration (top) and segregation (bottom) states are superimposed onto the glass 
brain in a sagittal view separately, with connections in the left hemisphere for visualization purpose only. Size of nodes and corresponding connections represent the 
relative prediction weights of BLA- and CMA-target links derived from Elastic-net regression model separately. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.). 
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ignificant in integration and segregation states with and without ex-
lusion (all permutated p < 0.001). To further examine the differences
n predictive accuracy under integration and segregation states, we im-
lemented nonparametric bootstrap approaches. Independent t test re-
ealed a significantly higher predictive accuracy for SCLs in the inte-
ration than segregation state [before exclusion: t (9998) = 328.48, two
ailed p < 0.001; after exclusion: t (9998) = 259.19, two tailed p < 0.001],
ndicating higher correlations between time-varying BLA/CMA intrinsic
onnectivity and SCL fluctuations in integration state, compared with
egregation state. Together, these results indicate higher predictive cor-
elation between time-varying BLA/CMA intrinsic connectivity and SCL
uctuations for integration than segregation states. 

.4. Distinct BLA and CMA target network configurations predict 

utonomic arousal 

We further investigated prediction weights of each connectivity link
or feature) derived from Elastic-net regressions for integration and seg-
egation states respectively. Analyses of BLA and CMA-based target net-
ork configurations revealed a dissociation of prediction weights in
ultiple distributed brain regions between the integration and segre-

ation states ( Fig. 5 A, Tables S4, S5 ). We then computed the relative
atio of total prediction weights for BLA and CMA-target networks sepa-
ately. Interestingly, we observed a relatively CMA-dominated contri-
ution in the integration state and a BLA-dominated contribution in
he segregation state ( Fig. 5 B ). This pattern of results remains stable
hen accounting for the most contributed connections under different

hresholds ( Fig. S11 ). We further explored the spatial distribution for
ost predictive connections by visualizing the top 25% BLA- and CMA-

ased target connections in integration and segregation states separately
 Fig. 5 C ). For the integration state, we observed prominent target con-
ections involving the sensory cortex (SM, STG, ITC), limbic structures
Insula, mCC) and subcortical structures (thalamus). For the segregation
tate, we observed the top 25% connections in prefrontal systems (i.e.,
PFC, MFG, IFG) and (para)hippocampus regions as well as crus re-

ions in cerebellum. Again, such dissociation between integration and
8 
egregation states is reproducible even without exclusion of 7 partici-
ants ( Fig. S12 ). Together, these results indicate distinct BLA and CMA
arget network configurations in integration and segregation states that
redict spontaneous SCL levels. 

. Discussion 

In this study, we investigated the dynamical organization of intrin-
ic functional connectivity networks associated with the amygdala nu-
lei and its contributions to autonomic arousal in humans. By leverag-
ng machine learning and clustering approaches, we identified two dis-
inct states of time-varying BLA/CMA intrinsic connectivity networks:
n integration state exhibits generally stronger connectivity among BLA-
nd CMA-based target networks, whereas a segregation state exhibits
elatively weaker yet dissociable BLA- than CMA-based connectivity
ith cortical regions. Furthermore, we found a clear dissociation of

patio-temporal patterns for BLA- and CMA-based intrinsic connectiv-
ty networks within integration and segregation states. Critically, such
ime-varying dissociable states of BLA- and CMA-based target networks
re linked to spontaneous SCL fluctuations – a measure of autonomic
rousal, with significantly higher SCL and higher predictive accuracy in
he integration as compared to the segregation state. Such time-varying
ntegration and segregation states with distinct BLA- and CMA-based
etwork configurations contribute to predicting spontaneous fluctua-
ions of SCL. 

One of our major findings is to identify two distinct states of time-
arying intrinsic functional connectivity patterns for BLA and CMA tar-
et networks by implementing sliding-window and K-mean clustering
ethods. Specifically, the integration state exhibits generally stronger

onnectivity with almost all of target ROIs and substantially overlapping
etween BLA and CMA target networks, as compared with the segrega-
ion state. Unlike the integration state, however, the segregation state
xhibits relatively weaker yet clearly functional dissociation between
LA and CMA target networks. This segregation pattern partially is in

ine with previous findings on functional segregation of BLA and CMA
arget networks using the conventional static averaging (static-like) ap-
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roaches ( Etkin et al., 2009 ; Qin et al., 2012 ). Building on the neu-
oanatomical models in rodents, with the amygdalar nuclei via unique
onnections to form dedicated circuits in support of distinct affective
unctions ( LeDoux, 2000 , 2007 ), our observed time-varying integration
nd segregation states provide prominent evidence to highlight a dy-
amic functional reorganization of BLA- and CMA target networks over
ime in humans. Moreover, BLA and CMA target networks in integra-
ion state showed a higher spatio-temporal coupling phenomenon com-
ared with segregation state, suggesting an integrated property for in-
egration state. Such highly coupling patterns between BLA and CMA
arget networks, in a spatio-temporal manner, are not reported by the
onventional scan-length averaging functional connectivity approaches.
otably, such dynamic integration and segregation pattern is repro-
ucible by another independent cohort of participants and by using a
otally independent AICHA atlas in both cohorts, suggesting the repro-
ucibility and robustness of our current findings. Together, these two
ynamic states provide novel evidence to suggest that BLA and CMA in-
rinsic functional circuits do not remain constant, rather undergo spon-
aneously fluctuated over time. This extends previous findings on intrin-
ic functional organization of the amygdalar nuclei derived from con-
entional (static-like) approaches and animal models ( Roy et al.,2009 ;
in et al., 2012 ). 

A second major finding of our study is that SCL during the integration
tate is significantly higher than segregation state. Since SCL is a reliable
easure of autonomic arousal ( Critchley et al., 2010 ; Boucsein, 2012 ),

t is thus conceivable that our observed associations may reflect a link
etween time-varying functional connectivity of the amygdala nuclei
nd autonomic (physiological) arousal. Notably, the window-averaging
CL in our present study most likely reflects a tonic-like component of
utonomic arousal rather than external stimulus-induced SCR in previ-
us studies ( Patterson et al., 2002 ; Bach et al., 2009 , 2010 ). In other
ords, our observed relatively slow fluctuations of SCL may represent

pontaneity of one’s internal autonomic arousal to some extent, which is
eminiscent of findings from one recent study ( Baczkowski et al., 2017 ).
nd the BLA- and CMA-based functional circuits and their associated

ntrinsic networks could play an essential role in modulating such inter-
al state. From a systems level, converging evidence from human func-
ional neuroimaging suggests large-scale configurations in functional
rain networks detected by BOLD-fMRI signals are closely linked to
hanges of autonomic arousal due to the activation of (non)adrenergic
ystems ( Chang et al., 2009 ; Phelps et al., 2005 ; Hermans et al., 2011 ;
im et al., 2017 ). Animal studies have also demonstrated that LC re-

easing norepinephrine ( Aston-Jones and Cohen, 2005 ) acts on corre-
ponding receptors in widely distributed brain regions especially the
mygdala and related networks, thereby prompting rapid increases in
euronal excitability and functional coupling among these disparate re-
ions ( Arnsten, 1998 ). 

Moreover, we found that time-varying amygdala subregional intrin-
ic connectivity patterns in the integration state were predictive of
pontaneous fluctuations of SCL, with significantly higher predictive
ccuracy in the integration than segregation state. These may reflect
ncreased functional coordination of BLA and CMA-modulated large-
cale neural networks, accompanying with highly associated autonomic
rousal measured by pupillometry data in humans ( Murphy et al., 2011 ).
uch association has been observed in animal models. For example,
cute stress can trigger a widespread cascade of neurochemical changes
hat rapidly prompt neuronal excitability of large-scale brain networks
nto a tonically sensitive mode ( Joëls and Baram, 2009 ; Stujenske and
ikhtik, 2017 ). Thus, it is possible that there are multiple neuromod-
latory systems contributing to our observed stronger yet overlapping
attern between BLA and CMA target networks in the integration state.
n other words, the integration state may result from endogenous au-
onomic and hormonal stimulations promoting the excitability of neu-
onal ensembles in the amygdalar nuclei and related functional cir-
uits, thereby promoting the adapative flexibility of the brain’s inter-
al affective or homeostatic states to meet ever-changing environmen-
9 
al needs. Indeed, evidence from recent studies have suggested that in-
egrated states may enable faster and more effective performance on
 cognitive task, most likely through ascending neuromodulatory sys-
ems to regulate the transition between multiple modes of brain function
 Shine et al., 2016 ; Shine et al., 2019 ). 

A third important finding of our study is that distinct features (or
onnections) from time-varying states of BLA and CMA target networks
ontribute to predicting spontaneous autonomic arousal as evidenced by
CL fluctuations. Specifically, a CMA-dominated pattern relating to pre-
icting autonomic arousal in integration state was observed, compared
ith a BLA-dominated pattern in segregation state. Such divergence be-

ween two dynamic states may exhibit distinct arousing modes, with one
wning preference of CMA-engagement phenomenon (integration state)
nd the other exhibiting preference of a BLA-engagement pattern (seg-
egation state). Additionally, such dynamical phenomenon is to some
xtent in line with newly emerging evidence from recent animal re-
earch, which demonstrates that amygdala ensembles can dynamically
epresent internal affective or homeostatic states ( Janak et al., 2015 ;
eyeler et al.,2018 ). Specifically, the dynamic assembly of two major
opulations of neurons in the BLA plays a role in regulating animal’s
nternal autonomic or physiological states through several output path-
ays to larger brain networks ( Salzman et al., 2010 ; Zhang et al., 2018 ;
rundemann et al., 2019 ). However, given the fact that neuroanatomi-
al and neurochemical properties of the amygdala nuclei in rodents may
iffer from that in humans ( Pabba et al., 2013 ), future studies are re-
uired to elucidate the neurobiological mechanisms of how the BLA- and
MA-based functional circuits regulate spontaneous autonomic arousal

n humans. 
Moreover, the divergence between two dynamic states is further sup-

orted by their distinct spatial distributions for the BLA- and CMA-
ased intrinsic connectivity among widespread brain regions, includ-
ng portions of prefrontal cortex, cingulate cortex, (para)hippocampus,
ensory-motor cortex as well as cerebellum regions. These dissociable
atterns may reflect a dynamic nature of the amygdalar nuclei (BLA and
MA) in converging information from multiple brain systems closely
elated to affective, homeostatic and cognitive states ( Craig, 2002 ;
ritchley, 2005 ; Pollatos et al., 2007 ). Given the fact that dynamic
tates are robustly associated with SCL, we assume that functional co-
rdination of these regions could further reflect an increase in neu-
onal excitability and functional connectivity within the salience net-
ork that is responsible for hypervigilant, anxious and/or stressful states
 Hermans et al., 2011 ; McMenamin et al., 2014 ). From a psychopatho-
ogical perspective, both hyper-activation and hyper-connectivity in the
mygdala nuclei and associated functional circuits have been linked
o internalizing symptoms and abnormalities in affective functions and
utonomic responses including somatization symptoms and anxiety
 Bishop, 2007 ; Hermans et al., 2011 ). Thus, the dynamical organiza-
ion of integration and segregation states within the amygdala nuclei
nd their intrinsic networks could be relevant to develop the objective
iomarkers linking to internalizing symptoms and autonomic arousal
n affective disorders. In addition, the amygdala is recognized to play
 critical role in affective information processing likely through its
unctional coupling with regions in polymodal association areas and
he prefrontal cortex in emotion perception, appraisal and regulation
 Lim et al., 2009 ). Thus, it is likely to speculate that our observed
LA and CMA target networks in the integration and segregation states
ay reflect internal physiological responses with different responsive
odes of arousal involved in a variety of cognitive and affective func-

ions that can’t be detected by the conventional methods. Furthermore,
he dynamic transitions between these two distinct states may together
uild self-organized dynamics modulating temporally rapid autonomic
rousal in a systematic level. 

The dynamical (re)organization of large-scale brain networks
olds the promise to enable the flexibility of brain functioning and
apid adaptation in face of ever-changing environmental demands
 Deco et al.,2011 ; McMenamin et al., 2014 ; Braun et al., 2015 ). To our
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nowledge, no studies to date have directly investigated the dynamical
rganization of amygdala subregional functional circuits and networks.
ur findings thus extend the existing knowledge on functional organiza-

ion of emotion-related brain circuitry which is theorized to play a criti-
al role in regulating one’s internal autonomic (and more broadly home-
static) states. This line of research has its potential to extend into in-
estigating function and dysfunction of emotion-related brain circuitry
n affective disorders including anxiety and depression. The mainstay of
revious studies using the conventional approaches have demonstrated
motion-related brain dysconnectivity in patients with affective disor-
ers, with hyper- and/or hypo-connectivity patterns in limbic, paral-
mbic and prefrontal systems critical for vigilance, rapid detection and
emories for threatening stimuli, emotion regulation and expression

 Adolphs et al., 1994 ; Clark and Beck, 2010 ; Sturm et al., 2003 ). Thus, it
ould be highly relevant to investigate how dysregulated brain dynam-

cs as well as functional circuits linked to the amygdalar nuclei in partic-
lar underlie the core symptoms of affective disorders. Understanding
he dynamical organization of emotion-related brain circuitry represents
n important step toward developing brain-inspired biomarkers of affec-
ive and psychosomatic disorders on a circuit-level ( Insel et al., 2010 ).
uture studies are required to delineate how the dynamical organization
f the amygdala nuclei with broader networks regulates internal affec-
ive or autonomic responses in both healthy and psychiatric conditions.

Our findings should be considered in light of several limitations.
irst, the sliding window and machine learning methods we imple-
ented here rely on ad hoc procedures to determine parameters like
indow length or clustering numbers. More precise and unbiased ap-
roaches are needed in future studies. Second, there is a relatively
mall sample size for SCL data in our present study, which may limit
ts generalizability to other populations. Third, our study highlights
he association of time-varying states of BLA- and CMA-based intrinsic
unctional connectivity networks with spontaneous autonomic arousal,
nd future studies are needed to shed light on the mechanistic under-
tanding of how amygdala subregions dynamically interact through spe-
ific projections to modulate autonomic arousal and internal states in
umans. 

In conclusion , our study demonstrates dynamic integration and seg-
egation of the emotion-related brain networks that are linked to differ-
nt internal autonomic states. Our findings provide important implica-
ions into understanding the neurobiological mechanisms of how the
ynamical organization of emotion-related brain networks regulates in-
ernal physiological states, and eventually inform dysregulated brain
ynamics in affective disorders and psychopathology. 
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