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Abstract 

Functional brain networks require dynamic reconfiguration to support flexible cognitive 

function. However, the developmental principles shaping brain network dynamics remain poorly 

understood. Here, we report the longitudinal development of large-scale brain network dynamics 

during childhood and adolescence, and its connection with gene expression profiles. Using a 

multilayer network model, we show the temporally varying modular architecture of child brain 

networks, with higher network switching primarily in the association cortex and lower switching 

in the primary regions. This topographical profile exhibits progressive maturation, which 

manifests as reduced modular dynamics, particularly in the transmodal (e.g., default-mode and 

frontoparietal) and sensorimotor regions. These developmental refinements mediate age-related 

enhancements of global network segregation and are linked with the expression profiles of genes 

associated with the enrichment of ion transport and nucleobase-containing compound transport. 

These results highlight a progressive stabilization of brain dynamics, which expand our 

understanding of the neural mechanisms that underlie cognitive development.   
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Introduction 

The human brain is an efficient and dynamic information processing system with a complex 

spatiotemporal organization. Network science approaches have revealed that the human brain 

functional network contains a non-trivial modular structure, in which functional specialization 

and integration are well balanced at low wiring cost (He et al., 2009; Liao et al., 2017; Meunier 

et al., 2010; Sporns & Betzel, 2016). This modular structure facilitates a fast response to domain-

specific stimuli (Bertolero et al., 2015; Meunier et al., 2010; Sporns & Betzel, 2016) and also 

enables efficient global brain communication (Bullmore & Sporns, 2012). Recent studies suggest 

that the modular organization of the brain is not static but rather shows temporally varying 

patterns over short time scales (e.g., seconds), with higher network switching primarily in the 

association (e.g., frontoparietal) regions and lower variability in the primary regions (Chen et al., 

2016; Liao et al., 2017; Liu et al., 2020; Pedersen et al., 2018). These network dynamics 

contribute significantly to flexible cognitive function (Chen et al., 2016; Liao et al., 2017; 

Pedersen et al., 2018; Yin et al., 2020) and are distinctive to each individual (Liao et al., 2017). 

During short-term training, network segregation in the brain is increased through dynamic 

reconfigurations, and these increases correspond to improved task automation (Bassett et al., 

2015; Finc et al., 2020). These findings suggest a link between adaptive network dynamics and 

skill acquisition which we believe may be significant not only during short term learning but also 

in long term development. However, how network dynamics changes during childhood and 

adolescence, a crucial stage for cognitive and behavioral development, remains largely unknown. 

The goal of the current study was to gain insight into the principles shaping the maturation of 

network dynamics in the human brain, and its connection with cognitive development and gene 

expression profiles. 

Childhood and adolescence are critical developmental phases for the consolidation and 

refinement of individual motor, cognitive, social, and emotional capabilities (National research 

council (US), 1984; Paus et al., 2008). These physical, psychological and cognitive 

developments occur in parallel with the substantial development of brain architecture (Cao et al., 

2016; Vértes & Bullmore, 2015). During this period, brain microstructure is fine-tuned through 

processes including regressive synaptic pruning and progressive myelination (Tau & Peterson, 

2010; Vértes & Bullmore, 2015). At the macroscopic level, the modular structure of the 

functional brain networks undergoes remarkable reconfiguration with age (Cao et al., 2016; 

Grayson & Fair, 2017; Vértes & Bullmore, 2015), shifting from anatomical proximity during 

childhood to a spatially distributed layout at adulthood (Fair et al., 2009). Within modules, a 

decrease in the number of short-range connections with age is observed in some modules as a 

result of synaptic pruning (Fair et al., 2007; Supekar et al., 2009), while in others, the number of 

long-range connections increases over time, for example the increase in anterior-posterior 

connections observed in the default-mode network (Fair et al., 2008; Fan et al., 2020; Sato et al., 

2014). Between modules, integration between the default-mode network and other brain systems 

exhibits an age-related increase, while integration between the higher-order cognitive network 

and the subcortical network with other brain systems show an age-related decrease (Gu et al., 

2015). These system-specific changes in intra- and inter-module connections are indicative of the 

growing functional differentiation of brain modules with development. Notably however, 

previous studies on brain network modularity were mainly undertaken on the development of 

static (i.e., time-invariant) modular architecture, and largely ignored the temporal dynamics of 

brain modularity. Yet, as recent work has pointed out, cognitive growth is largely dependent on 
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age-related adjustments in the brain’s temporal dynamics (Hutchison & Morton, 2016). To date, 

how modular dynamics in the brain network develops towards maturation over childhood to 

adolescence has yet to be established. 

Structural and functional development of the brain is shaped by genetic factors (Douet et al., 

2014; Johnson et al., 2009; Zhong et al., 2018). For instance, animal model studies have revealed 

that myelination in the central neural system is closely governed by a gene named the myelin 

gene regulatory factor, which is specifically expressed in oligodendrocytes (Emery et al., 2009), 

and synaptic pruning is mediated by astrocytes through the Megf10 (i.e., multiple epidermal 

growth factor-like domains protein 10) and Mertk (i.e., Mer tyrosine kinase) phagocytic 

pathways (Chung et al., 2013). Recent advances in connectome-transcriptome association 

analysis now enable us to explore the transcriptional signatures underlying the spatial 

organization of the human brain network in vivo (Fornito et al., 2019). In adults, the spatial 

layout of functional modules is shaped by genes associated with the enrichment of ion channels 

(Richiardi et al., 2015). Inter-module hubs have also been shown to be metabolically expensive, 

with an overrepresentation of genes for oxidative metabolism and mitochondria (Vértes et al., 

2016). A very recent study reported that the spatial layout of brain module dynamics in adults is 

associated with genes involved in potassium ion transport, establishing a link between large-scale 

connectivity dynamics and transcriptional profiles (Liu et al., 2020). Nevertheless, little is known 

on how gene expression is linked to developmental brain dynamics in children. 

To address these issues, we investigated the developmental changes in brain network dynamics 

between childhood to adolescence, and the transcriptional profiles of genes related to this 

process. Brain network analyses were undertaken using a large longitudinal resting-state 

functional magnetic resonance imaging (rsfMRI) dataset comprised of scans from 305 healthy 

children (age 6-14 years, 491 scans in total) (Fan et al., 2020), and genetic analysis was 

conducted using postmortem gene expression data from the Allen Human Brain Atlas 

(Hawrylycz et al., 2012). Specifically, for all rsfMRI scans of each participant, we applied a 

multilayer network model (Mucha et al., 2010) to identify the time-resolved modular architecture 

in the child brain and further quantified the temporal switching of regional module affiliations. 

We aimed to investigate i) developmental patterns in brain network dynamics during childhood 

and adolescence at the whole-brain, system and nodal levels, and their potential association with 

cognitive development; ii) whether these developmental patterns contribute to age-related 

changes in the information transmission capability of brain networks; and iii) the association 

between developmental changes in brain network dynamics and gene transcriptional profiles. 

Results 

Spatial Patterns of Brain Network Dynamics in Children 

We conducted a longitudinal rsfMRI study on a cohort of 305 typically developing children (age 

6-14 years; each individual underwent 1-3 separate scanning sessions with an interval of 

approximately one year between each session, resulting in 491 scans) (Fig. 1A). For comparison 

purposes, we also included cross-sectional rsfMRI data from a group of 61 healthy adults (ages 

18-29 years). Both children and adults were scanned using the same scanner and identical 

scanning protocols. All MR images were subject to a strict quality control process before 

inclusion in this study (see Supplementary Information for further detail). Using a sliding 
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window approach (window length = 60 s, step size = 2 s), we first derived dynamic functional 

networks for all rsfMRI scans of each child. Network nodes were defined according to a random 

parcellation consisting of 1,024 regions of interest of uniform size (Zalesky et al., 2010), and 

dynamic connections were calculated as the Pearson’s correlation coefficient between the nodal 

time series within each window. To identify the time-varying modular structure, we employed a 

multilayer network model (Mucha et al., 2010) by incorporating functional connection patterns 

from adjacent time windows (Fig. 1B). Then, a temporal modular variability analysis (Liao et al., 

2017) was undertaken to quantify how brain nodes spontaneously switched their module 

affiliations over time (Fig. 1B).  

 

 
 

Figure 1. Age distribution of child participants and multilayer module dynamics at different ages. (A) 
Age information of child participant scans. (B) Schematic diagram of the multilayer network model and 

regional modular variability. Each layer represents a functional network within a sliding window. In addition to 

connections within the same layer, each node also connects to itself in adjacent layers. (C) Spatial patterns and 

frequency polygons of modular variability across the 1,024 nodes for each child subgroup and for the adult 
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group. (D) Top: spatial location of the eight functional systems (seven cortical systems (Yeo et al., 2011) and 

one subcortical system (Tzourio-Mazoyer et al., 2002)). Bottom: distribution of the mean modular variability 

value of each functional system for each child subgroup and for the adult group. Cortical data was mapped 

using the BrainNet Viewer software (Xia et al., 2013). VIS, visual; SM, somatomotor; DA, dorsal attention; 

VA, ventral attention; DM, default-mode; LIM, limbic; FP, frontoparietal; SUB, subcortical. 

 

We found that individual brain networks in children exhibited a modular structure, with 

modularity (Qmod) values ranging from 0.53 to 0.62 (mean ± std dev = 0.58 ± 0.02) and the 

number of modules (Nmod) ranging from 5.35 to 6.58 (mean ± std dev = 5.93 ± 0.21). To 

qualitatively illustrate the progressive developmental changes in the spatial pattern of brain 

dynamics between childhood to adolescence, we divided the 491 rsfMRI scans into eight age 

subgroups, with a one-year interval between each subgroup. An average modular variability map 

was then generated for each age subgroup (Fig. 1C). We found that, at a group level, the spatial 

pattern of modular variability in the child brain network showed regional heterogeneity, with 

higher variability primarily observed in the frontal and parietal cortices, anterior/middle 

cingulate gyrus, and middle temporal gyrus, and the lowest modular variability observed in the 

visual cortex. This spatial pattern observed in the child cohort was highly similar to that of the 

adult group (Pearson’s correlations: range, 0.83-0.89; mean ± std dev = 0.88 ± 0.02, all pcorr < 

0.0001). The significance levels of these correlations were corrected for spatial autocorrelation 

using a null distribution of correlation coefficients (Burt et al., 2020) (see Methods section for 

further detail). When mapping these regions against the eight functional systems (visual, 

somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, default-mode and 

subcortical) identified in prior studies (Tzourio-Mazoyer et al., 2002; Yeo et al., 2011), we also 

observed a corresponding similarity in the system-dependent distributions of modular variability 

between child and adult brains (Fig. 1D). Notably, the topography of modular variability at both 

the global and system levels develops in a progressive fashion from childhood through 

adolescence towards that found in the adult brain. Below, we report our quantitative analysis of 

the longitudinal development of brain network dynamics. 

Developmental Changes in Brain Network Dynamics in Children 

To characterize the longitudinal development of brain network dynamics, a mixed effect model 

was applied (Diggle & Kenward, 1994; Laird & Ware, 1982). Such models are well suited for 

cases with missing data, irregular intervals between data measurements, or potential correlation 

between variables. To account for the potential linear and quadratic age effects, we used two 

different models that respectively had a linear and quadratic term as their highest-order term, and 

selected the optimal model with the lower Akaike information criterion value (Akaike, 1974) for 

use in our analysis (see Methods section for further detail). At the global level, the modularity, 

Qmod, of the dynamic brain networks increased with age (linear model, t = 4.77, p < 0.0001, Fig. 

2A, left), suggesting enhanced functional segregation of network modules with age. The global 

mean values of modular variability in the child brain decreased with age (linear model, t = -3.28, 

p = 0.0011, Fig. 2A, middle), while the standard deviation across regions increased with age 

(linear model, t = 2.43, p = 0.015, Fig. 2A, right). These results suggest that the temporal 

dynamics of brain networks tend to become more stabilized and more regionally differentiated as 

the brain develops from childhood to adolescence.  
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Figure 2. Longitudinal development of brain network dynamics in children. (A) Age effects on the 

network modularity and the mean and standard deviation of the whole brain modular variability. The boxplots 

represent the distribution median, and the 25th and 75th percentiles of the adult group. (B) Spatial distribution 

of regions showing significant developmental changes in regional modular variability between childhood to 

adolescence along with their corresponding T values (FDR-corrected p < 0.05). (C) Left: proportion of regions 

with significant age-related decreases in modular variability found in each functional system. Right: cognitive 

terms associated with regions showing significant age-related decreases in modular variability, which was 
performed based on the NeuroSynth metaanalytic database (Yarkoni et al., 2011). The font size of the cognitive 

terms represents the value of the correlation coefficient between the regions of interest and the cognitive term 
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maps. Font colors correspond to the different functional systems. (D) Schematic diagram of module co-

occurrence at the system level. Left: regional module affiliations at each time window, as detected using the 

multilayer network model. Middle: matrix showing the modular co-occurrence probability between the six 

source systems and each of the eight functional systems (target systems). Each element in the matrix represents 

the percentage of time windows in which two nodes from different systems belonged to the same module. 

Right: estimated age effects on the mean co-occurrence of every system pair. (E) Significant developmental 

effects on modular co-occurrence probability at the system level. Left: age effects on co-occurrence probability 

(*, p < 0.05, FDR corrected across 48 comparisons at the system level). Middle: age effect on the mean co-

occurrence probability for nodes within the default-mode system. Right: age effect on the mean co-occurrence 

probability of nodes in the default-mode system with those in the somatomotor system. We used a mixed effect 

model to estimate age effects. In (A) and (E), blue lines connecting scattered points represent longitudinal 

scans of the same child. The adjusted value denotes the measure of interest corrected for sex, head motion, and 

random age effects. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; DM, default 

mode; LIM, limbic; FP, frontoparietal; SUB, subcortical.  

 

At the nodal level, we observed that brain regions that showed significant changes in modular 

variability with age (a total of 77 nodes) predominantly exhibited significant linear decreases in 

variability (p < 0.05, false discovery rate (FDR) corrected). These nodes (75 in total) were 

principally distributed in the medial and lateral frontal and parietal cortices, supplementary 

motor area, and somatomotor cortex (Fig. 2B), and were primarily associated with the 

somatomotor (40%), default-mode (33.33%), and frontoparietal (17.33%) systems. The 

remaining nodes with significant linear decreases in modular variability with age were spread 

across the dorsal attention, ventral attention, and visual systems. For ease of reference in our later 

analysis, we designated these as the six “source systems”. We then explored the cognitive 

functions associated with these brain regions. Briefly, for each source system, we quantified the 

spatial correlation between the thresholded t-map denoting significant age effects within the 

source system and the cognitive term maps available from the NeuroSynth meta-analytic 

database (Yarkoni et al., 2011). We found that these regions were mainly associated with internal 

cognitive functions, social inference, and primary motor functions (Fig. 2C). In addition, we also 

identified one node in the left temporal-occipital junction which showed a significant age-related 

linear increase, and another node in the left olfactory cortex which showed age-related changes 

in modular variability that followed a U-shaped quadratic model (p < 0.05, FDR corrected). 

Next, we examined how the age-related decreases in nodal modular variability (which accounted 

for the overwhelming majority of age-related changes in variability) were associated with the 

dynamic interplay between the different functional systems. For each node showing a significant 

age-related decrease, we computed the modular co-occurrence probability of this node with each 

of the other nodes by calculating the percentage of time windows during which the two nodes 

belonged to the same module. Then, the modular co-occurrence of these nodes was summarized 

at the system level using the functional system atlas derived in previous studies. Specifically, we 

summed the modular co-occurrence between the six source systems (i.e., the somatomotor, 

default-mode, frontoparietal, dorsal attention, ventral attention, and visual systems) and all eight 

functional systems (referred to as the target systems). We assessed age effects on system-level 

co-occurrence using a mixed effect model with multiple comparison corrections (p < 0.05, FDR 

corrected) (Fig. 2D and 2E).  

We observed that, as age increased, nodes in the default-mode, frontoparietal and somatomotor 

systems showed significantly increased intra-system co-occurrence, indicating enhanced 
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functional specificity within these systems. In relation to inter-system co-occurrence, we found 

that significant increases in co-occurrence were primarily observed between transmodal areas 

(consisting of the default-mode/frontoparietal systems) and the subcortical system, as well as 

between the dorsal/ventral attention systems and the primary sensory systems (i.e., somatomotor 

and visual systems). Meanwhile, significant decreases in co-occurrence were mainly observed 

between the default-mode/frontoparietal systems and the primary sensory systems, as well as 

between the default-mode/frontoparietal system and the attention systems. These findings 

suggest that the six source systems tend to be divided into two clusters, one comprising the 

transmodal areas and the subcortical system, and the other comprising the primary sensory and 

attention systems. During development, functional integration between these two clusters of 

systems decreases with age. 

Brain Network Dynamics Mediates Age Effects on Communication Efficiency 

We further explored whether the development of network dynamics might contribute to age-

related changes in the information communication capability of brain networks. Here, we 

considered two global network metrics, global efficiency (Eglob) and local efficiency (Eloc) 

(Latora & Marchiori, 2001; Rubinov & Sporns, 2010) (see Methods section for further detail). 

Eglob and Eloc respectively capture how efficiently information is transferred across all pairs of 

nodes, and in the neighborhood of a node. For each scan, the Eglob (or Eloc) value of the dynamic 

brain networks was calculated as the average Eglob (or Eloc) value across all windows. We found 

that Eglob of the functional networks decreased significantly with age (linear model, t = -3.34, p < 

0.001), while Eloc increased significantly with age (linear model, t = 4.98, p < 0.0001) (Fig. 3A), 

indicating decreased information integration and increased information segregation between 

childhood and adolescence. Next, we examined the relationship between brain module dynamics 

and network efficiency (i.e., Eglob or Eloc) across individuals, controlling for age. We found that 

global mean values of modular variability showed a positive correlation with Eglob (r = 0.67, p < 

0.0001) and a negative correlation with Eloc (r = -0.63, p < 0.0001) (Fig. 3B). These findings 

indicate that the dynamic module switching of brain regions is associated with integrated and 

segregated processing in brain networks. 

Given the age-related changes in both network efficiency and brain module dynamics, we 

assessed whether the relationship between age and network efficiency was mediated by brain 

module dynamics. We performed a mediation analysis (Baron & Kenny, 1986) in which modular 

variability was taken as the mediator (see Methods section for further detail) and found that the 

global mean value of modular variability had a significant mediation effect on the relationship 

between age and Eglob and Eloc (p < 0.05 for both, bootstrapped n = 5,000) (Fig. 3C). To further 

determine the specific brain systems contributing to the mediation effects, we performed a 

parallel multiple mediation analysis (Preacher & Hayes, 2008), in which the modular variability 

values of the six source systems (i.e. the somatomotor, default-mode, frontoparietal, dorsal 

attention, ventral attention, and visual systems) were taken as potential mediators. We found that 

modular variability of the default-mode, frontoparietal, somatomotor and visual systems 

exhibited significant mediation effects on the relationship between age and Eglob and Eloc (all ps < 

0.05, bootstrapped n = 5,000), while modular variability of the attention (i.e., dorsal and ventral 

attention) system did not (Tables S1 and S2). The explained fraction of the total effect in the 

mediation models varied across functional systems, being highest in the somatomotor system, 

followed by the default-mode, visual, and frontoparietal systems for both Eglob and Eloc. These 
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findings suggest that the reduction in module dynamics (i.e., network switching) between 

childhood to adolescence, in particular the reduced dynamics in the somatomotor and default-

mode systems, significantly mediates the development of brain network communication 

efficiency to its mature state in the adult brain.  

 

 
 

Figure 3. Relationship between age, brain dynamics and network efficiency in children. (A) Age effects 

on global efficiency and local efficiency in the dynamic functional networks. The boxplots represent the 

distribution median, and the 25th and 75th percentiles of the adult group. (B) Relationship between modular 

variability and network efficiency in children. (C) Mediating effects of modular variability on developmental 

changes in global efficiency (left) and local efficiency (right) (all ps < 0.05, bootstrapped n = 5,000). ***, p < 

0.001. In (A) and (B), the blue lines connecting scattered points represent longitudinal scans of the same child. 

The adjusted value in (A) denotes the measure of interest corrected for sex, head motion, and random age 

effects. The residual value in (B) denotes the measure of interest corrected for sex, head motion, and fixed and 

random age effects. We used a mixed effect model to estimate age effects.  

 

Linking Developmental Network Dynamics in Children with Gene Transcriptional Profiles 

To investigate whether the regionally heterogeneous development of brain network dynamics 

was associated with gene expression profiles, we performed a connectome-transcriptome 

association analysis using brain-wide gene expression data from six donors, publicly available 
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from the Allen Human Brain Atlas (http://human.brain-map.org/) (Hawrylycz et al., 2012). To 

map the gene expression profiles to the random-1024 parcellation used in our network 

construction, we first preprocessed the data by performing probe re-annotations, data filtering, 

probe selection, sample assignment, and data normalization (see Methods section for further 

details). After preprocessing, expression maps for 15,745 genes were used in the subsequent 

analysis. Because only data from two donors were available for the right hemisphere, to improve 

reliability, we conducted our analysis using gene expression data for the left hemisphere, which 

were available for all six donors. As the majority of nodes showing significant changes in 

modular variability exhibited age-related decreases (i.e., negative beta values) (Fig. 2B), we 

explored the spatial association between gene transcriptional profiles and the magnitude of the 

developmental change (i.e., |𝛽𝑎𝑔𝑒|) in regional modular variability (Fig. 4A and 4B). For each 

gene, we estimated the spatial similarity between its transcriptional profile and the absolute value 

of the developmental rate in modular variability by calculating the Pearson’s correlation 

coefficient across nodes that showed negative age effects. To correct for potential spatial 

autocorrelation, we generated a null distribution of correlation coefficients, with the spatial 

autocorrelation of the original map of developmental rate in modular variability set as a 

constraint during the generation process (Burt et al., 2020). A total of 4,551 genes were identified 

as showing a significant correlation (p < 0.05, FDR corrected) with developmental changes in 

modular variability. Of these, 2,190 genes showed a positive correlation and 2,361 genes showed 

a negative correlation. The 10 genes showing the highest positive correlations are listed in Figure 

4C (see Table S3 for all genes showing significant positive correlations). To explore the 

functional significance of these genes, we performed a gene ontology annotation analysis using 

the ToppGene Suite (https://toppgene.cchmc.org) (Chen et al., 2009). We found that the 

positively correlated genes were associated with significant enrichment of biological processes, 

primarily those involving ion transport and nucleobase-containing compound transport (p < 0.05, 

FDR corrected) (Fig. 4D). For the enrichment of biological processes related to the negatively 

correlated genes, please see Table S4. 

Validations 

To demonstrate the robustness of our main findings, we performed several validation analyses, 

including: (i) testing for the residual effects (post nuisance regression) of head motion on the 

estimation of modular variability; (ii) evaluating the influence of sliding window parameters on 

observed brain network dynamics, mediation effects and genetic association by repeating the 

analyses using a) a longer sliding window length (60 s) and b) weaker coupling between adjacent 

temporal windows (inter-layer coupling parameter ω = 0.75); and (iii) assessing the impact of 

network thresholding strategies used during functional network construction on observed brain 

network dynamics, mediation effects and genetic association by repeating relevant analyses on 

brain networks with an increased network density (density = 10%), and on a different network 

type (i.e., weighted as opposed to unweighted network).We found that the head motion 

parameters for mean framewise displacement (FD) (Power et al., 2012) did not show a 

significant correlation with modular variability (Fig. S1), suggesting that the influence of head 

motion on the observed developmental changes in brain network dynamics was weak. We also 

found that, overall, the application of different strategies for analysis did not affect or alter our 

main conclusions. The results in relation to the development of brain network dynamics, its 

mediation effects on the network efficiency, and the associated genes remained largely 

unchanged (Figs. S2-S5). 
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Figure 4. Association between the developmental changes in brain network dynamics and gene 

expression profiles. (A) Spatial pattern of the magnitude of developmental changes (i.e., |𝛽𝑎𝑔𝑒|) in modular 

variability for regions showing negative linear age effects in the left hemisphere. (B) Matrix of gene expression 

profiles. Each column represents the expression profile of each gene across the 348 nodes of interest. (C) 

Genes showing the highest positive correlations with the developmental change in regional modular variability. 

Only the top 10 genes are listed. Pearson’s correlation coefficients were calculated within the set of nodes 

showing negative linear age effects. (D) Gene ontology (GO) terms of biological processes associated with 

genes showing significant positive correlations with developmental changes in module dynamics. Dots marked 

with text represent GO terms obtained with correction applied for multiple comparisons (FDR-corrected p < 

0.05), and the remainder represent GO terms obtained where no correction was applied (uncorrected p < 0.05). 

The dot size represents the number of genes that overlap with the corresponding GO term. 

 

Discussion  

Using longitudinal rsfMRI data from a large cohort of healthy children, we demonstrate for the 

first time the development of brain network dynamics between childhood to adolescence and its 

connection with gene expression profiles. Specifically, modular dynamics in the brain network 

become progressively more stable as the brain matures, and is correlated with the transcriptional 

profiles of genes associated with the enrichment of ion transport and nucleobase-containing 

compound transport. Changes in modular variability occur primarily in the default-mode, 

frontoparietal and somatomotor systems. The development of more stable network dynamics 

mediates segregated and integrated processing in the brain, indicating an enhancement in the 

functional specialization of brain regions during this period of development. Together, these 

findings highlight the progressive stabilization of network switching between childhood and 
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adolescence and describe the related gene expression profiles, providing insights into the 

understanding of typical and atypical development. Further, where the majority of previous 

developmental connectomics studies have mainly focused on dynamic functional connectivity 

patterns (Faghiri et al., 2018; Hutchison & Morton, 2015; Marusak et al., 2017; Medaglia et al., 

2018; Qin et al., 2015; Ryali et al., 2016), our study includes a specific investigation of the 

maturation of dynamic network topology during childhood and adolescence and the associated 

cognitive implications, greatly increasing the current knowledge on human brain development.  

In the course of our investigation, we also observed that the topography of dynamic modular 

configurations during childhood and adolescence followed an adult-like spatial pattern. Evidence 

from adults indicates that during rest, brain regions spontaneously switch between functional 

modules in a spatially heterogeneous way, such that the association cortex shows higher temporal 

variability than the primary cortex (Chen et al., 2016; Liao et al., 2017; Liu et al., 2020; Pedersen 

et al., 2018). Highly variable regions usually act as flexible hubs to maintain efficient inter-

module communication and promote cognitive flexibility (Schaefer et al., 2014; Yin et al., 2020). 

The spatial pattern observed from our child rsfMRI dataset showed a regional distribution of 

modular variability similar to that of the adult brain described in previous studies. A similar 

spatial pattern was also observed in a previous study on functional module switching in infants 

(Yin et al., 2020). Combining our observations with prior findings in studies on the adult (Chen 

et al., 2016; Liao et al., 2017; Liu et al., 2020; Pedersen et al., 2018) and infant brain (Yin et al., 

2020), we speculate that the spatially heterogeneous pattern is a common and underlying 

property that reflects the regional diversity in brain module dynamics.  

The age-related decrease in functional modular variability may be explained by the development 

of white matter structural connections. Temporal variability in functional connectivity strength 

has been demonstrated to be structurally constrained by white matter tracts (Deco et al., 2011; 

Fukushima et al., 2018; Liao et al., 2015; Zhang et al., 2016). More specifically, two brain 

regions linked by direct structural connections (i.e., white matter tracts) tend to show smaller 

temporal variability in functional connectivity strength than regions without direct structural 

connections, and the greater the strength of a direct structural connection, the smaller the 

temporal variability of the functional connectivity strength between the regions (Liao et al., 

2015). Between childhood to adolescence, white matter tracts undergo profound refinements, 

including regressive processes (e.g., elimination of circuits, axonal projections or synapses) and 

progressive myelination at the microscopic scale (Tau & Peterson, 2010; Vértes & Bullmore, 

2015), and heterogeneous increases in structural connectivity strength at the macroscopic scale 

(Huang et al., 2015; Zhao et al., 2015). Given that structure-function coupling increases with age 

(Baum et al., 2020; van den Heuvel et al., 2015), the development of the white matter structural 

network may reduce regional switching frequency between functional modules and thereby 

promote the development of modular dynamics in the brain towards an adult level of stability. 

Enhanced functional segregation during development has been identified in previous 

neurodevelopmental studies which applied a static functional connectivity approach (Cao et al., 

2016; Gu et al., 2015; Stevens et al., 2009). This is further confirmed by our findings that 

functional modularity in dynamic networks also increases with age. Consistent with the 

developmental changes in functional modularity, we also observed that, between childhood and 

adolescence, global network efficiency decreased and local network efficiency increased with 

age. Interestingly, we found that regional modular variability, especially that of the default-mode 
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and somatomotor systems, significantly mediated the relationship between age and network 

efficiency. Prior studies in adults have demonstrated that dynamic adjustments in connectivity, 

especially connectivity adjustments in the default-mode network, induce fluctuations in network 

efficiency over time (de Pasquale et al., 2016; Zalesky et al., 2014). Thus, it is reasonable to 

postulate that, between childhood to adolescence, reduced modular variability in the default-

mode system contributes to changes in intra- and inter-module information communication, 

affecting the development of communication efficiency in the dynamic functional networks.  

In developmental cognitive neuroscience, the theory of interactive specialization (Johnson, 2011) 

posits that during postnatal development, the function of brain regions becomes more 

specialized, as a result of the age-related reconfiguration of inter-regional interactions driven by 

intrinsic activities or environmental stimuli. Considering that brain module dynamics plays a 

crucial role in individual cognition (e.g., working memory) and behavior (e.g., motor skill 

learning) in adults (Bassett et al., 2011; Braun et al., 2015; Shine & Poldrack, 2018), the 

reduction in regional module variability and the changes in network efficiency observed in our 

study may be related to individual refinements in these capabilities during childhood and 

adolescence. Consistent with this, we found that the regions showing most significant decreases 

in modular variability were those primarily involved in self-referential thinking, social cognition 

and motor functions. In addition, a previous study has suggested that network flexibility in the 

human brain decreases when turning a motor skill task into an automatic process after a period of 

training (Bassett et al., 2015). We found that segregation between the somatomotor system and 

high-order systems increased between childhood to adolescence, suggesting that the decrease in 

modular variability in this system could be related to the refinement of somatomotor capabilities 

during this period. However, in contrast to our observations, one recent study found that regional 

module switching (i.e., flexibility), especially that of the primary system, showed significant 

increases with age during the first two years of life (Yin et al., 2020). This discrepancy may be 

attributable to the different developmental phases considered (infants versus school-age children) 

or to the application of different network construction strategies (i.e., absolute correlation 

thresholding versus fixed-density thresholding) in the two studies. 

By performing a connectome-transcriptome association analysis, a recent study that we also 

undertook demonstrated that the spatial heterogeneity of module dynamics in the adult brain is 

shaped by the expression profile of the genes primarily associated with potassium ion transport 

(Liu et al., 2020). Nevertheless, the genetic basis underpinning the development of functional 

network dynamics remains poorly understood. Our work addresses this gap in knowledge by 

revealing that the maturation of brain module dynamics towards an adult-like state is associated 

with the expression profiles of genes associated with the enrichment of ion transport and 

nucleobase-containing compound transport. Ion transport is one of the most important functions 

of a neuron, facilitating the balance of ion concentrations in and out of the cell membrane and 

promoting the stability of brain neural circuits (Gibson et al., 2007). A recent computational 

modeling study further suggests that ion concentration dynamics causes spontaneous neuronal 

fluctuations (Krishnan et al., 2018), which may contribute to fluctuations in blood oxygenation 

level-dependent (BOLD)-fMRI signals (Schölvinck et al., 2010). In addition, nucleoside 

transport has been found to be dependent on ion concentrations (especially that of Na+), and 

Na+/nucleoside co-transports are also an electrogenic process (Griffith & Jarvis, 1996). Given 

the above, it makes sense that the development of adult-like modular dynamics is related to the 

transport of ions and nucleobase-containing compounds, which can affect inter-regional 
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interactions by modulating neural activities.  

Of the genes that were found in our study to be highly correlated with age related decreases in 

modular variability, several have also been described in prior studies as being related to brain 

development. Specifically, ACAN (aggrecan) has been found to control the maturation of glial 

cells during brain development (Dornowicz et al., 2008); the basic helix-loop-helix gene HES6 

promotes neuronal differentiation (Bae et al., 2000); FGF9 (fibroblast growth factor 9) is crucial 

for the postnatal migration of cerebellar granule neurons (Lin et al., 2009); and Sema7A 

(semaphorins) regulates climbing fiber synapse elimination in the developing mouse brain 

(Uesaka et al., 2014). The identification of correlated genes provides novel clues for bridging the 

gap between our understanding of the developmental changes in brain network dynamics and our 

limited knowledge of the underlying biological mechanisms behind this process. 

Several issues and future research topics also come to light for further consideration. First, 

postmortem gene expression data from adult donors obtained from the Allen Human Brain Atlas 

was used to explore the relationship between gene expression and the age-related changes of 

network dynamics in children. However, while the absolute expression levels of genes may 

change with age due to developmental effects, their spatial patterns do not seem to change 

greatly after birth (Kang et al., 2011). As our interest lies in the spatial pattern (i.e., relative 

values across regions) of gene expression profiles rather than exact expression values, the choice 

of gene expression data should not have a great influence on our findings. Nevertheless, the 

availability of cerebral cortex gene expression data for children and adolescents could be 

beneficial for facilitating future exploration of the molecular mechanisms underlying 

developmental network dynamics. Secondly, previous studies in adults have suggested that brain 

network dynamics show a relationship with cognitive flexibility (Chen et al., 2016; Liao et al., 

2017; Yin et al., 2020) and individual task performance (Pedersen et al., 2018). How then is the 

progressive maturation of brain network dynamics during childhood and adolescence associated 

with the development of individual cognition and behavior? This still remains to be elucidated. 

Finally, as abnormalities in the dynamic characteristics of functional brain networks have been 

observed in several neurodevelopmental disorders (e.g., attention-deficit/hyperactivity disorder 

(Ding et al., 2020) and autism spectrum disorder (Harlalka et al., 2019)), delineating the typical 

developmental trajectory of brain network dynamics may provide novel clues for the early 

detection or diagnosis of atypical neurodevelopment.  

Methods 

Participants 

We utilized a longitudinal rsfMRI dataset consisting of scans obtained from 360 typically 

developing children (F/M = 163/197, 6 to 14 years, 643 scans in total) collected by the Children 

School Functions and Brain Development Project (Beijing Cohort). Participants included in this 

study were cognitively normal, and had no history of neuropsychiatric illness, psychoactive drug 

use, significant head injuries, or significant physical illness. Some of these children underwent 

multiple sessions of multi-modal MRI imaging (T1, T2, rsfMRI, etc.) with an interval of 

approximately one year between each session. After strict quality control screening (see 

Supplementary Information for further detail), 491 rsfMRI scans of 305 children (F/M = 

143/162, 6 to 14 years) were retained for use in our study. These were made up of 3 scans from 
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47 children (F/M = 31/16), 2 scans from 92 children (F/M = 47/45), and a single scan from 166 

children (F/M = 65/101). For the purposes of comparison, we also made use of an rsfMRI dataset 

comprised of data from 61 healthy young adults (F/M = 37/24, 18 to 29 years), which was 

acquired using an identical scanner and scanning protocols. The study was approved by the 

Ethics Committee of Beijing Normal University, and written informed consent was obtained 

from all participants or their parents/guardians. 

Data acquisition 

MRI data were acquired using a 3T SIEMENS Prisma scanner in the Center for Magnetic 

Resonance Imaging Research at Peking University. For each participant (child and adult), 

structural and functional MRI scans were acquired using the following protocols. T1-weighted 

images were acquired using a sagittal 3D magnetization prepared rapid acquisition gradient echo 

(MPRAGE) sequence: repetition time (TR) = 2,530 ms, echo time (TE) = 2.98 ms, inversion 

time = 1,100 ms, flip angle (FA) = 7°, matrix = 256 × 224, field of view (FOV) = 256 × 224 

mm2, slice number = 192, slice thickness = 1 mm, bandwidth = 240 Hz/Px. The rsfMRI data was 

acquired using an echo-planar imaging sequence: TR = 2,000 ms, TE = 30 ms, FA = 90°, matrix 

= 64 × 64, FOV = 224 × 224 mm2, slice number = 33, slice thickness/gap = 3.5/0.7 mm, scan 

duration = 8 minutes (i.e., 240 volumes in total). The participants were asked to fix their vision 

on a bright cross-hair in the center of the scanner screen. A field map was acquired prior to the 

rsfMRI scan using a 2D dual gradient-echo sequence: TR = 400 ms, TE1 = 4.92 ms, TE2 = 7.38 

ms, FA = 60°, matrix = 64 × 64, FOV = 224 × 224 mm2, slice number = 33, slice thickness/gap = 

3.5/0.7 mm.  

Data preprocessing 

Resting state fMRI data from the child cohort was preprocessed using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm) and DPABI 3.0 (Yan et al., 2016). First, for each scan, we 

removed the first ten volumes and performed slice-timing correction. Next, a field map 

correction was applied to remove geometric distortion. We then performed head motion 

correction and estimated the mean FD (Power et al., 2012) across time for each scan. Ninety-four 

scans were excluded due to excessive head motion (i.e., translation > 3 mm, rotation > 3°, or 

mean FD > 0.5 mm). The functional images were then co-registered with individual T1 images 

and spatially normalized to a custom template using a unified segmentation algorithm 

(Ashburner & Friston, 2005) (see Supplementary Information for further detail). During initial 

segmentation of the T1 images, Chinese Pediatric Atlases (CHN-PD) (6-12 years) (Zhao et al., 

2019) were used as the reference for segmentation to improve accuracy in the spatial 

deformation of pediatric brain images. The normalized functional images were resampled to 3-

mm isotropic voxels and spatially smoothed with a Gaussian smoothing kernel (full-width at half 

maximum = 4 mm). Next, we performed linear detrending, nuisance signal regression, and 

temporal band-pass filtering (0.01-0.1 Hz). During nuisance regression, the following nuisance 

regressors were included as covariates to reduce the influence of non-neural signals: Friston’s 24 

head motion parameters (Friston et al., 1996), “bad” time points with FD above 0.5 mm, and 

white matter, cerebrospinal fluid and global brain signals.  

Functional images from the adult cohort were preprocessed using the same procedures, except 

that when undertaking spatial normalization, functional images from the adult group were 

spatially normalized to the Montreal Neurological Institute (MNI) standard space. 
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Construction of dynamic functional networks 

The selection of an appropriate brain parcellation scheme is essential for node definition in the 

construction of functional networks (Bullmore & Bassett, 2011). For functional networks 

constructed from the child scans, we defined network nodes based on a customized random 

parcellation scheme, referred to as random-1024 parcellation, comprising 1,024 gray matter 

regions of uniform size (Zalesky et al., 2010). The time course for each node was extracted by 

averaging the time courses across voxels within the node. We then applied a commonly used 

sliding window approach (window length = 60 s, step size = 1 TR (i.e., 2 s), total windows for 

each scan = 201) to estimate dynamic functional connectivity over time (Hutchison et al., 2013; 

Lurie et al., 2020). Inter-node functional correlations for each window were approximated using 

the Pearson’s correlation coefficient between nodal time courses. The resulting networks were 

then thresholded by applying a network density of 5% to remove weak or spurious connections 

introduced by noise, producing a time-varying binary functional network for each rsfMRI scan of 

each child. Negative correlations were eliminated prior to network thresholding due to their 

ambiguous physiological interpretation (Fox et al., 2009; Murphy & Fox, 2017). 

Functional networks from the adult scans were constructed using the same procedures. To enable 

regional-level comparisons between the child and adult networks, we obtained the parcellation 

scheme for the adult networks by spatially transforming the random-1024 parcellation from the 

children’s custom space to MNI space. 

Identification of dynamic modular architecture 

We employed a multilayer network model (Mucha et al., 2010), which can incorporate 

connectivity information within adjacent time windows, to map the dynamic modular structure in 

the child and adult brain networks. Specifically, the dynamic functional networks in each scan 

were considered as a multilayer network consisting of 201 time-ordered layers (i.e., windows) 

with ordinal inter-layer coupling, in which identical nodes in adjacent layers were coupled with 

nonzero strength. Then, we identified the time-dependent modular architecture by optimizing the 

modularity, Qmod, of the multilayer network, with an implicit assumption that module change 

between layers was continuous. The modularity, Qmod, of the time-varying modular structure is 

defined as (Mucha et al., 2010): 

𝑄𝑚𝑜𝑑(γ, ω) =
1

2𝜇
∑ [(𝐴𝑖𝑗𝑙 − 𝛾𝑙

𝑘𝑖𝑙𝑘𝑗𝑙

2𝑚𝑙
) 𝛿(𝑙, 𝑟) + 𝛿(𝑖, 𝑗) ∙ 𝜔𝑗𝑙r]𝑖𝑗𝑙𝑟 𝛿(𝑀𝑖𝑙 , 𝑀𝑗𝑟),          (1) 

where variables i and j are node labels, and variables l and r are layer labels. Specifically, μ 

represents the total connectivity strength of the entire network, ml denotes the total connectivity 

strength within layer l, Aijl denotes the connectivity strength between node i and node j in layer l, 

kilkjl/2ml denotes the connection probability expected by chance between node i and node j in 

layer l, kil denotes the degree of node i in layer l, and Mil denotes the module label of node i in 

layer l. The function δ (x, y) is equal to 1 if variable x is identical to variable y, and is equal to 0 

in all other cases. Parameters γ and ω are, respectively, the topological resolution parameter and 

temporal coupling parameter. Parameter γ defines the module size. The larger the value of γ, the 

smaller the size of the identified modules, and the greater the number of modules in the network. 

Here, we used the commonly-used default value of γ = 1 (Bassett et al., 2011; Braun et al., 2015). 

Parameter ω determines the extent of inter-layer interaction. The smaller the value of ω, the more 
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independent the adjacent layers. We chose ω = 1 to balance the influence of inter-layer and intra-

layer edges (when ω <1, intra-layer edge strength dominates modularity optimization) (Bassett et 

al., 2011; Braun et al., 2015). Notably, the dynamic modular architecture varies slightly with 

each instance of mapping since the heuristic Louvain algorithm (Blondel et al., 2008) is applied 

in the optimization of modularity. Here, all measurements relating to dynamic modular 

architecture were taken as the average across 100 instances of mapping. The module detection 

algorithm for multilayer networks was obtained from an open MATLAB code package at 

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain (Jeub et al., 2012). 

Modular variability analysis 

To characterize the temporal reconfiguration of functional modular architecture, we tracked the 

change in functional modules over each window. Specifically, we assessed the change in module 

affiliation (i.e., network switching) over time for all nodes using modular variability as the 

chosen metric (Liao et al., 2017). First, given a node i, we evaluated the variability of its module 

affiliation between any two windows t and t’ (Steen et al., 2011) as 

𝑀𝑜𝑑𝑉𝑎𝑟𝑖(𝑡, 𝑡′) = 1 −
|𝑀𝑖(𝑡)∩𝑀𝑖(𝑡′)|2

|𝑀𝑖(𝑡)|·|𝑀𝑖(𝑡′)|
, t ≠ t ',                                    (2) 

where Mi(t) denotes the module to which node i belonged in window t, |Mi(t)| represents the 

number of nodes included in module Mi(t), and |Mi(t)∩Mi(t’)| represents the number of nodes in 

the intersection between modules Mi(t) and Mi(t’). A small intersection between two modules 

indicates large variability. Secondly, we calculated the total modular variability of a node over all 

time windows as (Liao et al., 2017) 

𝑀𝑜𝑑𝑉𝑎𝑟𝑖 =  ∑ 𝑤(𝑡) · 𝑀𝑜𝑑𝑉𝑎𝑟𝑖(𝑡)𝑁
𝑡=1 ,                                          (3) 

where 𝑀𝑜𝑑𝑉𝑎𝑟𝑖(t) =
1

𝑁−1
∑ 𝑀𝑜𝑑𝑉𝑎𝑟𝑖(𝑡, 𝑡′)𝑡′≠𝑡  denotes the modular variability of node i 

between window t and all other windows, and N denotes the total number of windows. A 

normalized weighted coefficient w(t) is employed in Eq. (3) to reduce the impact of potential 

outlier windows. The coefficient w(t) is a measure of inter-window similarity, which is calculated 

using adjusted mutual information (Vinh et al., 2010), and denotes the overall similarity of the 

modular structure in window t to that in all other windows. For each rsfMRI scan, we calculated 

the modular variability of each of the 1,024 nodes. The larger the nodal modular variability, the 

more often the node tends to switch between modules over time. The mean modular variability 

of the whole brain was calculated as the average modular variability across all nodes. 

To illustrate the change in modular variability patterns with development, we divided all child 

rsfMRI scans into eight subgroups, with a one-year interval between each subgroup. A group-

level modular variability map was generated for each subgroup by averaging individual maps 

within each subgroup. To enable comparison, a group-level modular variability map for the 

young adults was also generated. We then conducted Pearson’s correlation analyses to measure 

the spatial similarity between the modular variability maps of each age-group (i.e., all child 

subgroups versus the adult group). To correct for spatial autocorrelation, we generated 10,000 

surrogate maps constrained by the spatial autocorrelation characteristics of the modular 

variability map generated for the adult group (Burt et al., 2020), and obtained a null distribution 

of correlation coefficients for each subgroup of children. Empirically observed spatial similarity 
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values were compared against the null distribution to determine significance levels. To further 

assess the system dependence of nodal modular variability, we categorized the 1,024 nodes into 

eight functional systems. Seven of these systems were obtained from a prior functional system 

parcellation scheme (Yeo et al., 2011): the visual, somatomotor, dorsal attention, ventral 

attention, limbic, frontoparietal, and default-mode systems. The remaining subcortical system 

was extracted from the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). 

When analyzing system-dependence in children, the functional system atlases defined from 

adults were spatially transformed to the children’s custom space prior to the allocation of nodes 

to their respective functional systems. Finally, we quantified the age-related changes in regional 

modular variability using a mixed effect model.  

Relationship between developmental changes in brain network dynamics and cognitive 

function  

We explored the cognitive significance of regions showing significant age-related changes in 

modular variability using the NeuroSynth meta-analytic database (www.neurosynth.org) 

(Yarkoni et al., 2011). Specifically, we examined the cognitive terms associated with the regions 

exhibiting significant age-related decreases in modular variability, since these regions made up 

the overwhelming majority of brain areas showing developmental changes in network dynamics. 

We first generated six thresholded t-maps denoting age effects on regions of interest within each 

functional system separately by mapping these regions into the six source systems (i.e. the 

somatomotor, default-mode, frontoparietal, dorsal attention, ventral attention, and visual 

systems) (Tzourio-Mazoyer et al., 2002; Yeo et al., 2011). Next, we quantified the Pearson’s 

correlation between each t-map and all cognitive term maps available from the NeuroSynth 

database. The results were illustrated using word-cloud plots. 

Module co-occurrence analysis at the system level 

To explore whether the developmental changes in nodal modular variability were associated with 

the dynamic interplay between functional systems, we examined the age-related changes in 

module co-occurrence of different systems. Since most nodes exhibiting significant age effects 

showed linear decreases with age (Fig. 2B), we focused our analysis on nodes showing a 

significant negative age effect (Ns nodes in total). Briefly, the module co-occurrence probability 

of each node showing significant age effects with each of the other nodes in the brain network 

was calculated as the percentage of time windows in which the two nodes belonged to the same 

module (Braun et al., 2015). For all scans of each child, an Ns × 1,024 co-occurrence matrix was 

obtained (Fig. 2D). Next, the module co-occurrence matrix was summarized at the system level 

by calculating the average co-occurrence probability of nodes in each source system with nodes 

in each of the respective target systems. (Source systems are those containing nodes showing 

significant age-related decreases, i.e., the somatomotor, default-mode, frontoparietal, dorsal 

attention, ventral attention, and visual systems. Target systems refer to all eight functional 

systems.) Therefore, for all scans of each child, we obtained a 6 × 8 module co-occurrence 

matrix at the system level, each row of which denoted the co-occurrence probability of a source 

system with each of the target systems. Finally, we assessed the age-related changes in the co-

occurrence probability for each pair of systems using a mixed effect model. The significance 

level was corrected for multiple (i.e., 48) comparisons at the system level using the FDR method 

(corrected p < 0.05). 
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Relationship between age, brain dynamics and network efficiency 

To explore whether dynamic modular reconfiguration was related to information communication 

capabilities in the brain network, we considered two global network metrics, global efficiency 

and local efficiency, to capture different aspects of information transmission efficiency. 

Global efficiency (Eglob). Global efficiency measures information transmission efficiency across 

all pairs of nodes in the network (Latora & Marchiori, 2001; Rubinov & Sporns, 2010). In a 

given network, Eglob is defined as  

𝐸𝑔𝑙𝑜𝑏 =  
1

N(N−1)
∑

1

𝑑𝑖𝑗
, 𝑖 ≠ 𝑗𝑁

𝑖,𝑗=1 ,                                       (4) 

where N represents the total number of nodes in the network, and dij is the shortest path length 

between node i and node j. Eglob of the dynamic brain network was calculated as the average Eglob 

across all time windows. 

Local efficiency (Eloc). Local efficiency measures information communication efficiency between 

local subgraphs (Latora & Marchiori, 2001; Rubinov & Sporns, 2010). In a given network, Eloc is 

defined as 

𝐸𝑙𝑜𝑐 =
1

𝑁
∑ 𝐸𝑔𝑙𝑜𝑏(𝑖)𝑁

𝑖 ,                                                 (5) 

where N represents the total number of nodes in the network, and Eglob(i) represents the Eglob of 

the neighborhood nodes of node i. Eloc of the dynamic network was calculated as the average Eloc 

across all time windows. 

We estimated both the Eglob and Eloc of the dynamic functional networks for every scan, and 

applied a mixed effect model to explore age effects on these two measures. To assess whether 

network efficiency was related to modular variability, we conducted a Pearson’s correlation 

analysis between the mean modular variability of the brain and network efficiency across all 

scans, correcting for age, sex, and head motion effects. To further explore whether brain module 

dynamics mediated the age effects on network efficiency, we performed a single-level mediation 

analysis, with age, the mean modular variability of the brain, and network efficiency (i.e., Eglob 

and Eloc), set respectively as the independent variable (X), mediator (M) and dependent variable 

(Y). Finally, to differentiate the contribution of different functional systems to the mediation 

effect, we employed a parallel multiple mediation analysis, with the mean modular variability of 

each of the six source systems (i.e. the somatomotor, default-mode, frontoparietal, dorsal 

attention, ventral attention, and visual systems) designated as mediator. In each mediation model, 

the explained fraction of the total effect for a given indirect path was defined as the product of 

the standard regression coefficients along this path divided by the sum of the products for all 

paths. The mediation analysis was performed using the PROCESS plugin in SPSS (Preacher & 

Hayes, 2008). We then undertook bootstrapping (n = 5,000) to assess the statistical significance 

of the mediation analysis, for which a 95% confidence interval without 0 was equivalent to a 

significance level of 0.05 (Preacher & Hayes, 2004). 
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Relationship between developmental changes in brain network dynamics and gene expression 

profiles 

To investigate the association between developmental changes in brain network dynamics and 

gene expression profiles, we used brain-wide gene expression data publicly available from the 

Allen Human Brain Atlas (http://human.brain-map.org/) (Hawrylycz et al., 2012). This atlas 

contains 3,702 tissue samples from six donors, and provides their accurate MNI coordinates. 

Samples from two donors cover the whole brain, and the samples from the remaining four donors 

cover only the left hemisphere. Using the minimally processed data provided in the Allen Human 

Brain Atlas (http://help.brainmap.org/display/humanbrain/Documentation), we carried out the 

following procedures. First, we removed samples located in the brain stem and cerebellum, and 

re-annotated the gene names of probes for the remaining 2,748 samples. Secondly, we used the 

intensity-based filtering method (Arnatkevičiūtė et al., 2019) to filter the data. For each gene, its 

expression level in a given sample was obtained by averaging the expression values across all 

detecting probes. Next, we normalized the expression data using the scaled robust sigmoid (SRS) 

algorithm (Fulcher et al., 2013) (see Supplementary Information for further detail). We then 

matched the MNI coordinates of each sample to the random-1024 parcellation scheme of the 

adult group using the nearest-point search algorithm. Each sample was then assigned to one of 

the brain nodes. For each node, expression data for each gene was obtained by first averaging the 

data across samples from the same donor, and then averaging the nodal expression data across 

donors. Using this process, for each node, we obtained gene expression data for 15,745 genes. 

The preprocessing of gene expression data described above was performed by referencing the 

code at https://github.com/BMHLab/AHBAprocessing (Arnatkevičiūtė et al., 2019). As gene 

expression data for the right hemisphere was available from only two donors, to improve the 

reliability, we used left hemisphere gene expression data from all six donors for the subsequent 

brain network-gene association analysis.  

To examine whether the spatial inhomogeneity in developmental changes in nodal modular 

variability was associated with gene expression levels, we performed a spatial similarity analysis 

across the 348 nodes showing negative linear age effects (i.e., age-related 𝛽𝑎𝑔𝑒 < 0). For each of 

the 15,745 genes, we undertook a Pearson’s correlation analyses to measure the spatial similarity 

between gene expression profile and the magnitude of developmental changes (i.e., |𝛽𝑎𝑔𝑒|) in 

modular variability. To correct for spatial autocorrelation, we generated 10,000 surrogate maps 

constrained by the spatial autocorrelation characteristics of the map of developmental changes in 

modular variability (Burt et al., 2020), and obtained a null distribution of correlation coefficients 

for each gene of interest. Empirically observed spatial similarity values were compared against 

the null distribution to determine significance levels. Significantly correlated genes were 

identified with an FDR-corrected p < 0.05 and further divided into two categories, i.e., genes 

showing a significant positive correlation with age-related changes in modular variability and 

those showing a significant negative correlation. Separate functional enrichment analyses on 

these two categories of genes were performed using the ToppGene Suite 

(https://toppgene.cchmc.org/) (Chen et al., 2009). 

Statistical modeling 

Given the nature of the longitudinal rsfMRI data used in this study, we applied a mixed effect 

model to study the developmental trajectories of brain network measures (Diggle & Kenward, 
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1994; Laird & Ware, 1982). Such models are well suited for cases with missing data, irregular 

intervals between data measurements, or potential correlation between variables. To account for 

potential linear and quadratic age effects, we undertook separate analyses using two different 

models that respectively had a linear term and quadratic term as their highest-order term. For 

each analysis, we used the maximum likelihood method to undertake parameter estimation, and 

applied the Akaike information criterion (Akaike, 1974) to select the optimal model. Specifically, 

the linear model was defined as 

𝑦𝑖𝑗 = 𝛽0 + 𝑏i + (𝛽age + 𝑏age,i)ageij + 𝛽sexsexi + 𝛽mFDmFDij + 𝜀ij.                       (6) 

The quadratic model was defined as  

𝑦𝑖𝑗 = 𝛽0 + 𝑏i + (𝛽age1 + 𝑏age,i1)ageij + (𝛽age2 + 𝑏age,i2)ageij
2 + 𝛽sexsexi + 𝛽mFDmFDij + 𝜀ij.  

(7) 

In these models, yij represents the observed brain network measures of subject i at the jth scan, 

βage represents the fixed age effects, bage,i represents the random effects of subject i, and 𝜀𝑖𝑗 

represents the residual of subject i at the jth scan. Sex and mean FD (mFD) were also included as 

covariates in the two models. Here, we used the statistical models to estimate age effects on the 

following measures: the modularity (Qmod) of the dynamic networks, the mean and standard 

deviation of regional modular variability across the brain, nodal modular variability values, and 

network efficiency (Eglob and Eloc). All scatter plots illustrate fixed age effects after correction for 

random effects. 

Validation Analyses 

We further investigated whether our results were affected by head motion and network analysis 

strategies, specifically the choice of sliding window length, temporal coupling strength between 

adjacent windows, and network thresholding strategies. First, previous studies suggest that head 

motion can introduce spatially inhomogeneous bias in the estimation of functional connectivity 

(Power et al., 2012; Power et al., 2015), which may affect the evaluation of developmental 

effects (Satterthwaite et al., 2013). To reduce the influence of head motion, we included Friston’s 

24 head motion parameters (Friston et al., 1996), the global brain signal, and “bad” time points 

(FD > 0.5 mm) as covariates during nuisance regression. To further assess the residual influence 

of head motion, we also calculated the Pearson’s correlation coefficient between head motion 

(i.e., mean FD) and global network dynamics across scans. Secondly, the selection of sliding 

window length affects the estimation of dynamic connectivity and thus the temporal 

characteristics of the functional networks (Hutchison et al., 2013; Lurie et al., 2020; Shakil et al., 

2016). In our main analysis, we set the window length as 60 s, a timeframe which is able to 

reliably capture the temporal variations in the functional networks (Zalesky et al., 2014). To 

assess the potential influence of the sliding window length on our findings, we reconstructed the 

dynamic networks using a window length of 100 s. Third, in the multilayer network model, the 

temporal coupling parameter, ω, between adjacent windows has a strong impact on the 

reconfiguration of modular architecture between windows (Mucha et al., 2010). In addition to 

using ω = 1 in our main analysis, we also repeated the multilayer network module mapping 

analysis using ω = 0.75. Finally, we evaluated whether our findings were influenced by the 

network thresholding strategies applied in functional network construction, which can affect the 

estimation of the graph metrics (Bullmore & Bassett, 2011). In our main analysis, the maturation 
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of network topology was our principal focus, and we therefore generated binary networks with a 

fixed network density (i.e., 5%) to correct for inter-subject differences in the number and 

strength of functional connectivities. To explore the influence of network density, we constructed 

binary networks with a density of 10%. In addition, we also constructed weighted functional 

networks with a density of 5% to assess the impact of connectivity strength. 

Data availability  

Nodal time series of preprocessed rsfMRI signals and some data supporting the results of this 

study are available at https://github.com/helab207/Development-of-brain-module-dynamics.  

Code availability 

Codes used for the neuroimaging analysis and the statistical models are available at 

https://github.com/helab207/Development-of-brain-module-dynamics.  
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Supplementary Information  

 
Supplementary Methods 

Participants 

We employed a longitudinal rsfMRI dataset consisting of scans taken from 360 typically 

developing children (F/M = 163/197, 6 to 14 years, 643 scans in total) collected by the Children 

School Functions and Brain Development project (Beijing Cohort). The children included in this 

study were cognitively normal, according to a well-validated Chinese standardized cognitive 

ability test (Dong & Lin, 2011). Participants were excluded if they had a history of 

neuropsychiatric illness, psychoactive drug use, significant head injuries or significant physical 

illness, and were not permitted to take drugs, coffee or tea on the day of scanning. Some of these 

children underwent multiple sessions of multi-modal MRI imaging (T1, T2, rsfMRI, etc.) with 

an interval of approximately one year between each session. Each rsfMRI scan was assessed 

against strict quality control criteria before being included in the final dataset. As a result, 152 

rsfMRI scans were excluded due to field map error (N = 6), excessive head motion (N = 94), 

excessive “bad” time points (N = 12) and T1 artifacts (N = 40). Thus, after quality control 

screening, 491 rsfMRI scans from 305 children (F/M = 143/162, ages 6 to 14 years) were 

retained for use in our study. These were made up of 3 scans from 47 children (F/M = 31/16), 2 

scans from 92 children (F/M = 47/45), and a single scan from 166 children (F/M = 65/101). This 

dataset was used to explore the longitudinal development of brain network dynamics between 

childhood to adolescence (Fan et al., 2020). For comparison purposes, we also collected an 

rsfMRI dataset comprised of scans from 62 healthy young adults (F/M = 37/25, 18 to 29 years), 

which was acquired using an identical scanner and scanning protocols as those used to obtain the 

child dataset. After applying the same quality control criteria, data from one participant was 

excluded due to field map error. The final adult dataset was thus made up of rsfMRI data from 61 

adults (F/M = 37/24, ages 18 to 29 years). The study was approved by the Ethics Committee of 

Beijing Normal University, and written informed consent was obtained from all the participants 

or their parents/guardians. 

Image data preprocessing 

Resting state fMRI data from child participants was preprocessed using SPM12 

(https://www.fil.ion.ucl.ac.uk/spm) and DPABI 3.0 (Yan et al., 2016). Specifically, we first 

removed the first ten volumes and performed slice-timing correction. Next, a field map 

correction was applied to remove geometric distortion, which was then followed by a head 

motion correction. We also estimated the mean framewise displacement (FD) (Power et al., 

2012) across time for each scan. Ninety-four scans were excluded due to excessive head motion 

(i.e., translation > 3 mm, rotation > 3°, or mean FD > 0.5 mm). The motion-corrected functional 

images were co-registered with individual T1 images and then spatially normalized to a custom 

template using a unified segmentation algorithm (Ashburner & Friston, 2005) by applying the 

following procedures: individual T1 images were first segmented into gray matter, white matter 

and cerebrospinal fluid tissue maps using Chinese Pediatric Atlases (CHN-PD) (6-12 years) 

(https:// www.nitrc.org/projects/chn-pd) (Zhao et al., 2019) as the reference for segmentation. 

Selecting pediatric atlases specific to Chinese children improves the accuracy in spatial 
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deformation of pediatric brain images. The resulting gray matter, white matter, and cerebrospinal 

fluid maps were separately averaged across all scans to generate custom tissue templates. T1 

image segmentation was then repeated, this time using the custom tissue templates as the 

reference for segmentation. Subsequently, all individual functional images were spatially 

normalized to the custom space by applying the transformation parameters estimated during the 

second T1 segmentation, then resampled to 3-mm isotropic voxels and spatially smoothed using 

a Gaussian smoothing kernel (full-width at half maximum = 4 mm). Next, we performed linear 

detrending and nuisance signal regression. During the latter, Friston’s 24 head motion parameters 

(Friston et al., 1996), “bad” time points with FD above 0.5 mm, and white matter, cerebrospinal 

fluid and global brain signals were included as covariates. Finally, we used temporal band-pass 

filtering (0.01-0.1 Hz) to reduce low-frequency drifts and high-frequency physiological noise.  

Preprocessing of the adult data was undertaken using the same procedures as that performed on 

the child functional images, with the exception of the spatial normalization process. The adult 

functional images were spatially normalized to the Montreal Neurological Institute (MNI) space, 

with prior white matter, gray matter, and cerebrospinal fluid templates from SPM12 as the 

normalization reference. 

Gene data preprocessing 

We used brain-wide gene expression data publicly available from the Allen Human Brain Atlas 

(http://human.brain-map.org/) (Hawrylycz et al., 2012) to conduct our connectome-transcriptome 

association analysis. This atlas contains tissue samples from six donors, of which samples from 

two donors cover the whole brain, and samples from the other four donors cover only the left 

hemisphere. A total of 3,702 tissue samples are included in the atlas, along with their accurate 

MNI coordinates. Genetic data provided in the atlas has undergone minimal preprocessing in 

accordance with a white paper published on the Allen Brain Atlas website 

(http://help.brainmap.org/display/humanbrain/Documentation).  

Using this data, we carried out further preprocessing by first removing the samples located in the 

brain stem and cerebellum, leaving a total of 2,748 samples. Following this, we used the Re-

annotation toolkit (Arloth et al., 2015) to re-annotate probe gene names, and removed 10,521 

probes with missing Entrez IDs. Next, we used the intensity-based filtering method 

(Arnatkevičiūtė et al., 2019) to filter the data with reference to background noise intensity. 71% 

of genes within the same sample have been reported as having been measured with at least two 

probes (Arnatkevičiūtė et al., 2019). For each of these genes, its expression level within a sample 

was obtained by averaging the expression values across all detecting probes. After the above 

procedures were performed, each sample contained expression level data for 15,745 genes. We 

then undertook normalization of this gene expression data using the scaled robust sigmoid (SRS) 

algorithm (Fulcher et al., 2013) to minimize the impact of outliers.  

Although the Allen Institute has employed strategies to reduce individual differences, further 

normalization of the gene expression data was still required. We first performed cross-gene 

normalization within each sample, followed by cross-sample normalization for each gene within 

the same donor, in order to correct for measurement errors and discrepancies between different 

samples and donors (Burt et al., 2018). Next, we matched the MNI coordinates of each sample to 

the random-1024 parcellation scheme of the adult group using the nearest-point search algorithm 

(Barber et al., 1996), assigning each sample to one of the brain nodes. For each node, the 
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expression data of each gene was obtained by first averaging the data across the samples within 

the same donor and then averaging the nodal expression data across donors. This dual-averaging 

operation reduces the effect of inhomogeneous spatial distributions in samples across different 

donors and ensures that each donor makes the same contribution to the gene expression profile. 

The gene preprocessing described above was performed by referencing the code at 

https://github.com/BMHLab/AHBAprocessing (Arnatkevičiūtė et al., 2019).  
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Supplementary figures 

 

 
 

 

Figure S1. Relationship between brain network dynamics and head motion in children. 
Based on a Pearson’s correlation analysis across rsfMRI scans, there was no significant 

correlation between the mean modular variability of the whole brain and the mean FD across 

time windows (p > 0.05). Every circle represents one child rsfMRI scan. FD, framewise 

displacement.  
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Figure S2. Age-dependent changes in global brain network dynamics of children under 

different network analysis strategies. (A) Sliding window length = 100 s. (B) Temporal 

coupling parameter ω = 0.75. (C) Binary networks with a network density of 10%. (D) Weighted 

networks with a network density of 5%. In each alternative analysis, all network analysis 

parameters were set to be the same as those in the main analysis, except for the parameter of 

interest. Age effects were estimated using a mixed effect model. The adjusted value denotes the 

measure of interest corrected for sex, head motion, and random age effects. In all cases, the mean 

modular variability of the brain significantly decreased with age between childhood to 

adolescence. 
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Figure S3. Developmental changes in regional brain network dynamics of children under 

different network analysis strategies. (A) Sliding window length = 100 s. There were 64 brain 

nodes showing significant age-related changes in regional network dynamics (FDR-corrected p < 

0.05), of which 59 regions showed a linear decrease with age. (B) Temporal coupling parameter 

ω = 0.75. There were 74 brain regions showing significant age-related changes in regional 

network dynamics (FDR-corrected p < 0.05), of which 73 regions showed a linear decrease with 

age. (C) Binary networks with a network density of 10%. There were 178 brain regions showing 

significant age-related changes in regional network dynamics (FDR-corrected p < 0.05), of 

which 171 regions showed a linear decrease with age. (D) Weighted networks with a network 

density of 5%. There were 75 brain regions showing significant age-related changes in regional 

network dynamics (FDR-corrected p < 0.05), of which 74 regions showed a linear decrease with 

age. Age effects were estimated using a mixed effect model. Regional network dynamics was 

measured by the modular variability of network nodes. Note that significant regions in these four 

cases showed high levels of spatial overlap with those observed in the main results. 
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Figure S4. Mediation effect of brain network dynamics on the development of global 

efficiency and local efficiency in children under different network analysis strategies. (A) 
Sliding window length = 100 s. (B) Temporal coupling parameter ω = 0.75. (C) Binary networks 

with a network density of 10%. (D) Weighted networks with a network density of 5%. In general, 

the age-related reduction in functional module dynamics significantly mediated the age-related 

decrease in global efficiency and the age-related increase in local efficiency of brain networks, 

regardless of the network analysis strategy applied. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.03.433828doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.03.433828
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 
 

 

Figure S5. Gene ontology (GO) terms of biological processes associated with genes showing 

significant positive correlations with developmental changes in brain network dynamics 

under different network analysis strategies. (A) Sliding window length = 100 s. (B) Temporal 

coupling parameter ω = 0.75. (C) Binary networks with a network density of 10%. (D) Weighted 

networks with a network density of 5%. Gene ontology annotation analyses were conducted 

using the ToppGene Suite (https://toppgene.cchmc.org/). Dots marked with text represent 

significant GO terms obtained with correction applied for multiple comparisons (FDR-corrected 

p < 0.05), and the remainder represent GO terms obtained where no correction was applied 

(uncorrected p < 0.05). The dot size represents the number of genes that overlap with the 

corresponding GO term. In (A), in addition to the biological processes annotated in the plot, 

there were 6 significant GO terms unmarked due to space limitations. These are: i) cortical actin 

cytoskeleton organization; ii) regulation of catabolic process; iii) glial cell development; iv) 

ribonucleoside diphosphate metabolic process; v) cellular carbohydrate metabolic process; and 

vi) generation of precursor metabolites and energy. Notably, the GO term ion transport was 

consistently observed in the enrichment analysis under different network analysis strategies.  
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Supplementary Tables 

 

Table S1. Estimated parameters in the parallel multiple mediation analysis for global efficiency 

between childhood to adolescence 

Indirect 

path (M) 

Standardized 

coefficients 

(β) XM 

Standardized 

coefficients 

(β) MY 

95% CI 

(Bootstrap, 

 n = 5,000) 

Explained 

fraction of the 

total effect 

SM* - 0.30*** 0.24*** [-0.12, -0.04] 22.91% 

DM* - 0.31*** 0.22*** [-0.10, -0.04] 21.53% 

VIS* - 0.21*** 0.23*** [-0.08, -0.02] 15.02% 

FP* - 0.29*** 0.15** [-0.08, -0.02] 13.66% 

DA - 0.25*** 0.04 [-0.04, 0.02] - 

VA - 0.19*** 0.07 [-0.03, 0.00] - 

To differentiate the contribution of different functional systems to the mediation effect, a parallel 

multiple mediation analysis was used, with age, the mean modular variability of each of the six 

source systems, and global efficiency (i.e., Eglob) set respectively as the independent variable (X), 

mediator (M) and dependent variable (Y). The source systems are those containing nodes 

showing significant age-related changes in modular variability. For a given indirect path, a 

significance level below 0.05 was reached if 0 was not included in the 95% confidence interval 

(CI). The explained fraction of the total mediation effect was defined as the product of the 

standard regression coefficients along this path divided by the sum of the products for all paths. 

Direct standardized coefficients (XY) = 0.06.  

*, p < 0.05; **, p < 0.01; ***, p < 0.001.  

Abbreviations: SM, somatomotor; DM, default mode; VIS, visual; FP, frontoparietal; DA, dorsal 

attention; VA, ventral attention.  
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Table S2. Estimated parameters in the parallel multiple mediation analysis for local efficiency 

between childhood to adolescence 

Indirect 

path (M) 

Standardized 

coefficients 

(β) XM 

Standardized 

coefficients 

(β) MY 

95% CI 

(Bootstrap,  

n = 5,000) 

Explained 

fraction of the 

total effect 

SM* - 0.30*** - 0.23*** [0.04, 0.11] 19.41% 

DM* - 0.31*** - 0.22*** [0.04, 0.10] 18.67% 

VIS* - 0.21*** - 0.26*** [0.03, 0.08] 15.23% 

FP* - 0.29*** - 0.17*** [0.02, 0.08] 13.74% 

DA - 0.25*** 0.05 [-0.04, 0.01] - 

VA - 0.19*** - 0.01 [-0.02, 0.02] - 

To differentiate the contribution of different functional systems to the mediation effect, a parallel 

multiple mediation analysis was used, with age, the mean modular variability of each of the six 

source systems, and local efficiency (i.e., Eloc) set respectively as the independent variable (X), 

mediator (M) and dependent variable (Y). The source systems are those containing nodes 

showing significant age-related changes in modular variability. For a given indirect path, a 

significance level below 0.05 was reached if 0 was not included in the 95% confidence interval 

(CI). The explained fraction of the total mediation effect was defined as the product of the 

standard regression coefficients along this path divided by the sum of the products for all paths. 

Direct standardized coefficients (XY) = 0.10**.  

*, p < 0.05; **, p < 0.01; ***, p < 0.001.  

Abbreviations: SM, somatomotor; DM, default mode; VIS, visual; FP, frontoparietal; DA, dorsal 

attention; VA, ventral attention.  
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Table S3. List of genes showing a significant positive correlation with the developmental change 

in modular variability in the main analysis (Table S3. xlsx). 

This table is available at https://github.com/helab207/Development-of-brain-module-dynamics.  

 

Table S4. Enrichment analysis results (i.e., GO terms of biological process) for genes with a 

significant negative correlation with the developmental changes in modular variability in the 

main analysis (Table S4. xlsx). 

This table is available at https://github.com/helab207/Development-of-brain-module-dynamics.  
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