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For centuries, humans have attempted to improve memory using 
different mnemonic strategies. Perhaps the simplest strategy, 
known as retrieval practice, is through the act of retrieval, 

or actively recalling information as memory for that information 
becomes strengthened. Such retrieval practice can boost long-term 
retention, with robust memory gains after intervals of days or 
months1, suggesting that memory consolidation is also involved2. 
The value of retrieval practice is well recognized and widely used 
in education3, and also in the clinic to aid age-associated memory 
impairment4. Yet, active retrieval can also transiently change the 
memory strength and content5, thereby could render the memory 
trace labile and to be altered by current experience6, potentially 
inducing false memory7. However, little is known about how memo-
ries are reorganized through retrieval practice and subsequent con-
solidation to produce two seemingly contradictory effects.

Multiple psychological theories attempt to account for the effects 
of retrieval practice on memory8. The elaboration theory suggests 
that active retrieval can enrich the links of semantic networks, 
because additional associations and alternative routes are formed 
by retrieving the targeted memory9,10. The search-set restriction 
theory suggests that retrieval strengthens cue–target associations 
while suppressing irrelevant ones, which shares some similarities 
to the bifurcation model11. However, these theories appear insuf-
ficient to address how false memory is produced by retrieval prac-
tice. Recent episodic context accounts offer a new perspective in 
suggesting that memories can be updated by current contexts at 
each retrieval, and the current and previous contexts could serve 
as multiple cues to increase the accessibility of targeted memo-
ries12. This echoes neurocognitive evidence that retrieval practice  

facilitates memory updating through refined neural representa-
tions to discriminate individual memories13–16. It also offers a pos-
sible explanation for retrieval-induced false memory through which 
retrieved memories become labile during experience17,18, analogous 
to a kind of new learning. Such retrieval-induced learning is believed 
to involve a dynamic assembly of memory-related neural ensembles 
that reconstruct representations to meet the ever-changing environ-
mental needs19. However, there are still gaps in our understanding 
regarding the neurocognitive mechanisms on how retrieval practice 
actively reshapes the original representations to predict subsequent 
memory outcomes.

Another fundamental question regarding retrieval practice is 
how retrieval-induced transient changes in memory traces are 
transformed into stable representations to support subsequent 
long-term retention, while still being malleable enough for flexible 
needs. Traditional views on systems consolidation posit that mem-
ories initially rely on the MTL (especially the hippocampus), and 
slowly transform into stable representations through strengthen-
ing cortical connections over time16. But this theory has been chal-
lenged by recent evidence showing that newly acquired memories 
can become enduring engrams in the prefrontal cortex (PFC) in 
rodents soon after encoding20, or in the human PPC via repeated 
study-test cycles21, supporting a theory viewing retrieval as a fast 
route to memory consolidation13. However, recent studies have dem-
onstrated support for the systems consolidation theory by showing 
that offline consolidation could still be required for long-lasting 
memory after retrieval practice22,23. In addition, results are mixed on 
the question as to whether systems consolidation could foster false 
memories24–26. Thus, the question of how retrieval-induced online 

Rapid neural reorganization during retrieval 
practice predicts subsequent long-term retention 
and false memory
Liping Zhuang   1,2,7, Jingyi Wang   1,2,7, Bingsen Xiong   1,2, Cheng Bian1,2, Lei Hao1,2,3, Peter J. Bayley   4,5 
and Shaozheng Qin   1,2,6 ✉

Active retrieval can alter the strength and content of a memory, yielding either enhanced or distorted subsequent recall. 
However, how consolidation influences these retrieval-induced seemingly contradictory outcomes remains unknown. Here 
we show that rapid neural reorganization over an eight-run retrieval practice predicted subsequent recall. Retrieval practice 
boosted memory retention following a 24-hour (long-term) but not 30-minute delay, and increased false memory at both 
delays. Long-term retention gains were predicted by multi-voxel representation distinctiveness in the posterior parietal cortex 
(PPC) that increased progressively over retrieval practice. False memory was predicted by unstable representation distinctive-
ness in the medial temporal lobe (MTL). Retrieval practice enhanced the efficiency of memory-related brain networks, through 
building up PPC and MTL connections with the ventrolateral and dorsolateral prefrontal cortex that predicted long-term reten-
tion gains and false memory, respectively. Our findings indicate that retrieval-induced rapid neural reorganization together 
with consecutive consolidation fosters long-term retention and false memories via distinct pathways.

NatuRe HumaN BeHaviouR | www.nature.com/nathumbehav

mailto:szqin@bnu.edu.cn
http://orcid.org/0000-0001-9368-2300
http://orcid.org/0000-0002-1097-8710
http://orcid.org/0000-0002-3191-2534
http://orcid.org/0000-0002-0994-6586
http://orcid.org/0000-0002-1859-2150
http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-021-01188-4&domain=pdf
http://www.nature.com/nathumbehav


Articles NATuRe HuMAN BeHAviOuR

changes work together with offline consolidation to predict both 
true and false memory outcomes remains open.

The act of episodic retrieval involves multiple brain systems. 
Previous neuroimaging studies using univariate analyses have identi-
fied active engagement of the MTL, the ventrolateral and dorsolateral 
prefrontal cortex (VLPFC and DLPFC, respectively), and the PPC 
regions in retrieval practice27–29, but they provided limited insight 
into the dynamic nature of retrieval-induced reconstructive modi-
fications of the original memory representations. Multivariate pat-
tern analysis, especially the measurement of neural distinctiveness, 
has been widely used to assess multi-voxel representation patterns 
linked to individual memories during encoding and retrieval15,30. So 
far, little is known about how memory-related neural representa-
tions in prefrontal, parietal and MTL systems evolve over retrieval 
practice, and how these online changes contribute to subsequent 
memory consolidation. Furthermore, memory retrieval involves 
a complex network of widely distributed brain systems, including 
the VLPFC and DLPFC for retrieval search31 and episodic context 
updating32,33 as well as updating of existing memories34, the MTL 
for associative memories14,35 and the PPC for representing specific 
retrieved content36. It is thus of interest to evaluate how the dynamic 
assembly of memory-related brain networks among MTL, PFC and 
PPC regions support the online reinstatement of memories during 
retrieval practice. Network neuroscience now offers graph-based 
network approaches to provide insight into how interregional func-
tional connections are dynamically reconfigured over a course of 
progressive learning, including motor learning37 and mnemonic 
training38. There is little information available as to how retrieval 
practice reconfigures memory-related large-scale brain networks to 
predict subsequent memory outcomes after consolidation.

Here we address the above questions by integrating event-related 
functional magnetic resonance imaging (fMRI) with an eight-run 
retrieval practice and prospective consolidation paradigm across 
2 days (Fig. 1a) in combination with advanced analysis of multi-voxel 
representation patterns and network configurations. During the 
memory acquisition phase, participants were first trained to acquire 
48 face–scene associations. Participants then underwent fMRI scan-
ning while they were performing an eight-run memory practice 
phase. In this phase, participants either actively retrieved 16 pairs 
of associations (the RP condition), or not retrieved for another 16 
pairs (the NR condition), using each face as a cue. The remaining 
16 pairs were not presented during the memory practice phase, 
serving as the baseline condition. Thereafter, two cued-recall tests 
were given outside the scanner to assess memory retention for face–
scene associations after 30-min (short-term) and 24-h (long-term) 
intervals. Memory performance was scored for the remembrance of 
face–scene associations, and false memory if incorrect content was 
given when describing the associated scene. Multivariate and net-
work analyses of neural activity and connectivity over an eight-run 
retrieval practice allowed us to track dynamic changes in neural rep-
resentations and network configurations, and to determine which 
changes predicted these two memory outcomes. On the basis of the 
aforementioned empirical observations of retrieval practice and sys-
tems consolidation models, we expected retrieval practice to boost 
long-term retention after consolidation. We further expected that 
such beneficial effects would be associated with retrieval-induced 
refinement in neural distinctiveness and network configurations 
in the PPC and PFC. And if retrieval practice could produce false 
memories by retrieval-mediated learning and context updating12, 
we would expect that the MTL-centric neural representations and 
network reorganization would predict such false memory outcomes.

Results
Retrieval practice boosts retention with false memories. We first 
examined the effectiveness of retrieval practice on memory retention 
in immediate and delayed tests. A repeated-measure 2 × 3 analysis  

of variance (ANOVA) for associative memory performance, with 
time (immediate versus delayed) and condition (RP versus NR 
versus baseline conditions) as within-participant factors, revealed 
a main effect of conditions (F(2,112) = 23.97, P < 0.001, η2

p = 0.30, 
90% confidence interval (CI) = 0.18, 0.39) and condition-by-time 
interaction (F(2,112) = 10.38, p < 0.001, η2

p = 0.16, 90%, CI = 0.06, 
0.25; Fig. 1b and see Supplementary Results 2 for post hoc tests). 
Critically, we observed superior long-term retention (relative to 
baseline) for face–scene associations in the delayed test for RP (21.5 
± 3.1%) than NR condition (7.6 ± 3.3%) (t(56) = 4.37, P < 0.001, 
Cohen’s d = 0.58, 95% CI = 0.08, 0.20) (Fig. 1c). No statistical dif-
ference was observed for short-term retention in the immediate test 
(t(56) = −1.38, P = 0.17, Cohen’s d = −0.18, 95% CI = −0.09, 0.02, 
BF01 = 2.83). Moreover, we computed long-term retention gains by 
subtracting retention performance in the immediate test from the 
delayed test. Paired t-tests revealed that long-term retention for the 
RP condition gained significantly higher retention scores (18.1 ± 
4.6%) after consolidation than the NR condition (0.60 ± 4.6%) (t(56) 
= 4.19, P < 0.001, Cohen’s d = 0.56, 95% CI = 0.09, 0.26) (Fig. 1d). 
Such gains resulted from a marked increase of long-term retention 
in the RP after 24-h, and no change in the NR between immediate 
and delayed tests (Fig. 1b). Additional analyses for vividness ratings 
are provided in Supplementary Result 1 and Fig. 1.

Parallel 2 × 3 ANOVA for false memory scores revealed a main 
effect of conditions (F(2, 98) = 9.46, P < 0.001, η2

p = 0.16, 90% CI = 0.06, 
0.26; Fig. 1e) and detailed statistics are provided in Supplementary 
Results 2. We then compared participants’ memory scores (relative 
to baseline) for false content recalled in the immediate and delayed 
tests for RP and NR conditions. We observed significantly higher 
false memory for the RP than NR condition in the delayed test after 
24 h (t(49) = 2.49, P = 0.016, Cohen’s d = 0.35, 95% CI = 0.09, 0.87) 
as well as a marginally significant effect in the immediate test after 
30 min (t(49) = 1.92, P = 0.06, Cohen’s d = 0.27, 95% CI = −0.02, 0.89; 
Fig. 1f). On average, false memory scores across the two delays were 
significantly higher in the RP (0.65 ± 0.14) than NR condition (0.19 
± 0.16) (t(49) = 2.87, P = 0.006, Cohen’s d = 0.41, 95% CI = 0.14, 0.78; 
Fig. 1g). Together, these results indicate that retrieval practice boosts 
long-term retention gains for remembering face–scene associations 
after consolidation and also induces false memory in general.

Retrieval practice refines representations in PPC and MTL. Next, 
we examined retrieval-induced dynamic changes in memory-related 
neural representations over eight-run retrieval practices. We 
restricted our analyses to retrieval-related brain systems derived from 
a large-scale meta-analysis on the NeuroSynth platform. To verify 
the validity of this mask, we conducted a set of condition-specific 
similarity analyses for multi-voxel activity patterns during the RP (or 
NR) condition relative to the canonical retrieval-related activation 
map from the NeuroSynth (Fig. 2a). Such an approach allowed us to 
simply assess how the average neural activity patterns across all tri-
als within the RP (or NR) condition was similar to the NeuroSynth 
canonical reference pattern. A paired t-test revealed a higher pattern 
similarity in RP than NR (t(49) = 5.51, P < 0.001, Cohen’s d = 0.78, 
95% CI = 0.02, 0.05; Fig. 2b). Further analyses of changes in this simi-
larity metric over the eight runs revealed smaller variance (variabil-
ity) of neural similarity in the RP than NR (t(49) = −3.47, P = 0.001, 
Cohen’s d = −0.49, 95% CI = −0.01, −0.004; Fig. 2c). These results 
indicate a greater and more stable involvement of retrieval-related 
brain systems in RP than NR (Supplementary Fig. 2).

We then examined dynamic changes in the distinctiveness 
of memory-related neural representations across individual tri-
als over retrieval practice, by analysing the dissimilarity of 
intertrial multi-voxel neural activity patterns in the canonical 
retrieval-related brain mask separately for RP and NR trials in each 
run (Fig. 2d). The distinctiveness measure reflects how individual 
memories are refined and become discrete from each other through 
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the act of retrieval in each of eight runs. This analysis revealed a 
linear increase in intertrial neural distinctiveness over eight runs 
during the RP (F(1,398) = 10.95, P = 0.008, after Bonferroni correc-
tion, ‘corrected’ hereafter, η2

p = 0.03, 90% CI = 0.01, 0.06; Fig. 2e), 
but such an effect was not evident in the NR (F(1,398) = 5.60, P = 
0.15 corrected, η2

p = 0.01, 90% CI = 0, 0.04, BF01 = 1.63; Fig. 2f). 
Additional neural pattern fidelity and whole-brain univariate vali-
dation analyses are provided in Supplemental Results 3 and 4 and 
Supplementary Figs. 3–5.

Moreover, we investigated how retrieval practice refined neural 
representations in core memory-related brain systems. We decom-
posed the overall NeuroSynth brain mask into the PPC, MTL and 

PFC systems (Fig. 3a), and computed their corresponding intertrial 
neural pattern distinctiveness for RP and NR trials in each run. We 
observed a significant linear increase in neural distinctiveness over 
eight runs in the RP trials only in the PPC (F(1,398) = 12.06, P = 0.005 
corrected, η2

p = 0.03, 90% CI = 0.008, 0.06), and a marginally sig-
nificant increase in the PFC (F(1,398) = 6.70, P = 0.08 corrected, η2

p 
= 0.02, 90% CI = 0.002, 0.04), but not in the MTL (F(1,398) = 2.94, 
P = 0.70 corrected, η2

p = 0.007, 90% CI = 0.001, 0.03, BF01 = 2.19; 
regression plots in the Fig. 3b). However, we did not observe any 
reliable increase in these systems for the NR trials (all P > 0.16 cor-
rected, BF01 = 1.33, 1.52 and 1.31 for PPC, PFC and MTL, respec-
tively). In the RP condition, the intertrial neural distinctiveness in 
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Fig. 1 | experimental design and memory differences on RP and NR at two tests. a, Experimental design. The experiment consisted of three phases 
including memory acquisition, memory practice and subsequent memory tests. During memory acquisition, participants were trained to acquire 48 
face–scene associations. During memory practice in the scanner, participants were instructed to perform either RP (blue) or NR attempts over eight runs. 
Two cued-recall tests were performed to assess subsequent memory after short-term (30-min) and long-term (24-h) intervals. b, Bars depict face–scene 
associative memories in the RP, NR and baseline conditions at the immediate (30-min) and delayed (24-h) tests. A 2 × 3 repeated-measures ANOVA 
revealed a main effect of condition (F(2, 112) = 23.97, P < 0.001, η2

p = 0.30, 90% CI = 0.18, 0.39), and condition-by-time interaction (F(2, 112) = 10.38, P < 0.001, 
η2

p = 0.16, 90% CI = 0.06, 0.25). c, Bars depict memory performance for face–scene associations under the RP condition (relative to the corresponding 
baseline) outperformed the NR condition at the delayed test only (t(56) = 4.37, P < 0.001, d = 0.58, 95% CI = 0.08, 0.20). d, Long-term retention gains that 
were calculated from the delayed recall performance relative to the immediate recall performance showed significant difference between the RP and NR 
conditions (t(56) = 4.19, P < 0.001, d = 0.56, 95% CI = 0.09, 0.26). e, Parallel 2 × 3 ANOVA for false memory scores revealed a main effect of the conditions 
(F(2,98) = 9.46, P < 0.001, η2

p = 0.16, 90% CI = 0.06, 0.26) for the RP, NR and baseline trials. f, Bar graphs depict the difference between false memory scores 
of the RP and NR conditions relative to their corresponding baselines on the 30-min (t(49) = 1.92, P = 0.06, d = 0.27, 95% CI = −0.02, 0.89) and 24-h recall 
tests (t(49) = 2.49, P = 0.016, d = 0.35, 95% CI = 0.09, 0.87). g, Bar graphs depict the difference of the mean false memory scores (after subtracting their 
corresponding baselines) across two recall tests between the RP and NR conditions (t(49) = 2.87, P = 0.006, d = 0.41, 95% CI = 0.14, 0.78). Note: *P < 0.05; 
**P < 0.01; ***P < 0.001; NS, not statistically significant. Error bars represent the standard error of the mean (s.e.m).
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the final run was significantly higher than the first run in the PPC 
(t(49) = 3.55, P < 0.001, Cohen’s d = 0.50, 95% CI = 0.07, 0.27) and 
PFC (t(49) = 2.91, P = 0.005, Cohen’s d = 0.41, 95% CI = 0.05, 0.25; 
bar graphs in the Fig. 3b), but these effects were not evident for the 
NR trials (all t(49) < 1.08, all P > 0.28; all BF01 > 2.30). Critically, the 
distinctiveness of the final run in the PPC was positively correlated 
with long-term memory gains in the RP (r = 0.37, P = 0.009, 95% 
CI = 0.10, 0.58) but not the NR trials (r = −0.06, P = 0.67, 95% CI 
= −0.33, 0.22; BF01 = 5.20; Fig. 3c). Further, Steiger’s test revealed 
a significant difference in correlations between the RP and NR tri-
als (z = 2.27, p = 0.01). The intertrial neural distinctiveness of the 
final run in the MTL was positively correlated with false memory 
in the RP (r = 0.37, P = 0.02, 95% CI = 0.07, 0.60) but not the NR 
trials (r = −0.06, P = 0.69, 95% CI = −0.36, 0.24; BF01 = 4.87; Fig. 
3d). Further, Steiger’s test revealed a significant difference in these 
correlations between conditions (z = 2.13, P = 0.017). These results 
indicate that retrieval practice leads to heterogeneous dynamics of 
intertrial neutral distinctiveness in the PPC, PFC and MTL, with 
higher distinctiveness in the PPC being related to better long-term 
retention gains and higher distinctiveness in the MTL being related 
to more false memories.

Retrieval practice reorganizes memory-related brain networks. 
To track the dynamic assembly of large-scale memory-related 
brain networks including 15 nodes in the PPC, the PFC and 
the MTL over retrieval practice, we constructed a network con-
sisting of 15 × 15 pairwise links for each run (Fig. 4a) using a  

generalized form of context-dependent psychophysiological inter-
action (gPPI). Global efficiency was computed to assess how easily 
information flowed across a network via the shortest path between 
all pairs of nodes. Overall, we observed a significant increase in 
global network efficiency in the RP (t-test for slopes: t(49) = 2.78, 
P = 0.008, Cohen’s d =0.39, 95% CI = 0.15, 0.63), but a decrease 
in the NR (t(49) = −2.05, P = 0.046, Cohen’s d = −0.29, 95% CI 
= −0.53, −0.05; Fig. 4b). Follow-up tests revealed higher slopes 
in the RP than the NR (t(49) = 3.37, P = 0.001, Cohen’s d = 0.48, 
95% CI = 0.18, 0.77; Fig. 4c). Additional analyses also revealed 
dynamic network configuration changes over retrieval practice 
(Supplementary Fig. 6).

We then examined how dynamic reconfiguration of memory- 
related brain networks over retrieval practice contributed to 
long-term retention gains after consolidation. We implemented a 
network-behaviour prediction analysis by training a support vector 
regression (SVR) model with leave-one-out cross-validation, based 
on network features over eight runs in the RP (or NR) condition as 
the input data and long-term retention gains as the output variable. 
A feature selection procedure revealed that information derived 
from the top 1% links of all eight runs as the input features robustly 
predicted the accuracy of long-term retention (Supplementary  
Fig. 7a). The stable links across cross-validation iterations were then 
visualized in a cumulative manner in Fig. 5a.

We next performed a stepwise prediction analysis to character-
ize changes in predictive values as a function of eight runs by using 
selected links described above. The prediction values in the RP 
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were highest over the first five runs and remained at a stable level 
from then on (Supplementary Fig. 7c, blue line). This prediction 
in the RP outperformed the NR condition (Supplementary Fig. 7c, 
grey lines). To illustrate the network properties in the RP, we per-
formed graph theory-based network analyses for the selected links 
over eight runs. The betweenness centrality, which referred to the 
fraction of all shortest paths in the network that passed through 
a given node39, was computed to identify nodes that play a cen-
tral role in coordinating with others over retrieval practice. These 
analyses revealed a general increase in betweenness for nodes in 
the PPC, PFC and MTL networks (t-test for slopes: t(49) = 10.64, 
P < 0.001, Cohen’s d = 1.51, 95% CI = 0.78, 1.15; t(49) = 9.98, P < 
0.001, Cohen’s d = 1.41, 95% CI = 0.40, 0.60; t(49) = 8.67, P < 0.001, 
Cohen’s d = 1.23, 95% CI = 0.20, 0.33, respectively), with a more 
prominent increase in the PPC network (PPC versus PFC t(49) = 
8.77, P < 0.001, Cohen’s d = 1.24, 95% CI = 0.36, 0.57; PPC versus 
MTL t(49) = 9.15, P < 0.001, Cohen’s d = 1.29, 95% CI = 0.55, 0.86; 
Fig. 5c). Of the 15 nodes, the right VLPFC showed the most promi-
nent increase far above the others (compared to the second highest 
increased region of interest (ROI) t(49) = 2.53, P = 0.015, Cohen’s 
d = 0.36, 95% CI = 0.05, 0.45; Fig. 5c). These results indicate that 
dynamic reconfiguration of memory-related brain networks over 
retrieval practice is predictive of long-term retention gains, with 
the right VLPFC emerging as a hub of information processing that 
coordinated with other nodes.

PPC–VLPFC network configurations predict long-term reten-
tion. Given that the neural distinctiveness in the PPC was predic-
tive of long-term retention gains and the VLPFC emerged as a hub 
to coordinate with other brain regions over retrieval practice, we 
thus proposed that functional communication between these two 
regions would facilitate the refinement of neural distinctiveness in 
the PPC in the final run. To test this hypothesis, we implemented 
additional prediction analysis using the links of the right VLPFC, 
with PPC nodes as input features. This analysis revealed that con-
nectivity strength between these nodes was highly predictive of 
long-term retention gains (r(predicted, observed) = 0.65, P < 0.001, 95% 
CI = 0.47, 0.79; Fig. 5b), indicating the communication ability of  
these regions during retrieval practice is critical for memory reten-
tion outcome.

Furthermore, we examined the relationship between VLPFC 
network connectivity and intertrial neural pattern distinctiveness in 
the PPC nodes that has been considered to be an ‘output buffer’ for 
specific representations of the retrieved content36,40. We observed 
that connectivity strength of the effective links between the VLPFC 
and PPC nodes was positively predictive of intertrial neural pattern 
distinctiveness in the PPC in the final run (r = 0.29, P = 0.04, 95% 
CI = 0.01, 0.52). These results indicate that functional connectivity 
between the right VLPFC and PPC over retrieval practice is critical 
to predict intertrial neural pattern distinctiveness in the PPC and 
long-term retention gains.
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increase in intertrial neural pattern distinctiveness over eight runs in the PPC (F(1,398) = 12.06, P = 0.005, η2

p = 0.03, 90% CI = 0.008, 0.06), a linear trend 
in the PFC (F(1,398) = 6.70, P = 0.08, η2

p = 0.02, 90% CI = 0.002, 0.04) and a null effect in the MTL (F(1,398) = 2.94, P = 0.70, η2
p = 0.007, 90% CI = 0.001, 

0.03, BF01= 2.19). Bar graphs depict corresponding intertrial neural distinctiveness between the first and the final runs in each system. c, Scatter plots show 
positive correlation of long-term retention gains for face–scene associations with intertrial neural distinctiveness in the final run for the RP (left, r = 0.37,  
P = 0.009, 95% CI = 0.10, 0.58), but not for the NR (right, r = −0.06, P = 0.67, 95% CI = −0.33, 0.22; BF01 = 5.20). d, Scatter plots show positive 
correlation of false memory scores with intertrial neural distinctiveness in the final run for the RP condition (left, r = 0.37, P = 0.02, 95% CI = 0.07, 0.60), 
but not for the NR condition (right, r = −0.06, P = 0.69, 95% CI = −0.36, 0.24; BF01 = 4.87). Note that beta and P values are from least-squares fitting and 
P values were adjusted with the Bonferroni correction. Error bars represent s.e.m.
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MTL–DLPFC rapid network configurations predict false 
memory. On the basis of above observed neural distinctive-
ness in the MTL linked to false memories, we investigated how 
retrieval-induced changes in the MTL-centric functional networks 
contribute to subsequent false memories. We conducted a machine 
learning-based prediction analysis for false memory scores with a 
focus on the MTL-centric links with prefrontal and parietal nodes 
over eight runs in the RP condition (Fig. 6a). Given that false mem-
ory showed a similar pattern for 30-min and 24-h intervals, we used 
the general false memory (relative to baseline) scores collapsed 
across the two intervals for this prediction analysis. This analysis 
revealed the MTL-based connectivity with the DLPFC emerged as 
the best predictor for false memories (r = 0.39, P = 0.02, 95% CI 
= 0.11, 0.62; Fig. 6b). The connectivity strength between the hip-
pocampal and DLPFC nodes in the final run was positively predic-
tive of intertrial neural distinctiveness of the final run in the MTL  
(r = 0.40, P = 0.008, 95% CI = 0.11, 0.63; Fig. 6c), but this effect was 
not evident in the PPC (r = 0.22, P = 0.15, 95% CI = −0.08, 0.49,  
BF01 = 1.94).

Moreover, we conducted a prediction analysis for false memo-
ries on the basis of the entire 15 × 15 network data, by training an 
independent SVR model with leave-one-out cross-validation and 
feature selection similar to the above analysis for long-term reten-
tion. The most stable links that overlapped across iterations to 
predict false memory outcomes were visualized in Supplementary 

Fig. 9a. The prediction values gradually increased over eight-run 
retrieval practice in the RP condition, which outperformed the NR 
condition (Supplementary Fig. 7d). Graphic network analyses for 
selected links revealed a gradual increase in betweenness central-
ity for the DLPFC, hippocampus, VLPFC and lateral parietal cortex 
(LPC) (t-test for slopes showed the minimum t(42) = 5.91, P < 0.001, 
Cohen’s d = 0.90, 95% CI = 0.29, 0.59; Supplementary Fig. 9b–d). 
Together, these results indicate that the MTL connectivity with 
the DLPFC during retrieval practice is predictive of false memory 
outcomes and also associated with intertrial neural distinctiveness  
in the MTL.

Discussion
By tracking dynamic changes in neural representations and net-
work configurations, we investigated the neurocognitive mecha-
nisms reshaping memories during retrieval practice and subsequent 
consolidation. Retrieval practice boosted long-term retention after 
consolidation with a 24-h but not a 30-min delay, and increased 
false memory in general. Long-term retention gains were correlated 
with neural distinctiveness in the PPC that increased over retrieval 
practice, whereas false memory was correlated with unstable neural 
distinctiveness in the MTL. Retrieval practice gradually enhanced 
efficiency of memory-related brain networks, and built up PPC 
and MTL connections with the VLPFC and DLPFC to predict 
long-term retention gains and false memory. Our findings indicate 
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that retrieval practice reshapes memory-related neural representa-
tions and network configurations to promote long-term retention 
gains while producing false memory. In the following paragraphs, 
we will discuss our results on long-term retention gains and false 
memories, subsequently.

The first aspect is the neurocognitive underpinnings of how 
retrieval practice promotes long-term retention gains. In line with 
previous findings of retrieval practice1,3, the long-term retention 
gains appeared time-dependent in the RP condition only after 24 h. 
Since such measure was no difference in immediate recall between 
the RP and NR conditions and no further manipulations took place 
afterwards, we speculate that subsequent offline systems consolida-
tion is crucial to promote long-term retention gains. This finding 
does not necessarily contradict recent models showing repeated 
retrieval as a fast route to memory consolidation21. Echoing our 
observations, recent evidence also suggests that while the forma-
tion of memory engrams might be initiated during online practice, 
consecutive offline consolidation appears necessary to transform 
them into stable representations for long-term storage22,23. Hence, 
we speculate that multiple retrieval attempts on the targeted memo-
ries might have prioritized or ‘tagged’ these memories as important 
or future-relevant, turning them into a super-ordinate position for 

subsequent consolidation. Being proposed also by Ferreira and 
colleagues22, this tagging hypothesis could be a possible account 
(although not excluding other mechanisms) for long-term reten-
tion gains after consolidation in the RP, while memories that did 
not undergo retrieval practice might be tagged as less important 
and vulnerable to being forgotten later. As we will discuss below, 
our observed brain–behaviour associations may be accounted for 
by a process of gradual direct encoding into the neocortical net-
works over retrieval practice working together with consecutive  
offline consolidation.

At the neural representation level, retrieval practice led to hetero-
geneous changes in multi-voxel activity patterns in memory-related 
brain systems, with the most prominent increase in intertrial neural 
distinctiveness in the PPC. This measure assessed how fine-tuned 
neural representations discriminated among individual memo-
ries41, partially analogous to pattern separation42,43. This finding 
probably indicates that those representations of the retrieved events 
became increasingly differentiated from each other in the PPC over 
retrieval practice14. Critically, the PPC’s neural distinctiveness in 
the final run in the RP but not NR condition was positively asso-
ciated with long-term retention gains. This association emerges in 
the final (rather than the first) run, suggesting the evolvement of 
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fine-tuned neural representations is progressive over retrieval prac-
tice. Together with the recent evidence that memory engrams can 
be detected in the PPC soon after repeated rehearsal21, it is thus rea-
sonable to assume that PPC plays a role in tuning memory represen-
tations into a differentiated status over retrieval practice. How such 
online neural tuning process cooperates with offline consolidation, 
with or without sleep, to promote long-lasting memory needs to be 
addressed in future studies.

Beyond neural representations, we found that connectivity 
between large-scale brain networks became strengthened over eight 
runs, with higher global efficiency in the RP than NR condition. On 
the basis of the graphic theory of brain networks44, the strengthening 
of connectivity with higher efficiency may reflect a gradual build-up 
of more effective routes over retrieval practice, through which the 
target information could be reweighted as important for future 
use. Moreover, our network-based prediction results show that 
retrieval-induced network reconfigurations are critical to predict 
long-term retention gains, with rapid growth in betweenness over 
the initial five runs. The most prominent effect emerged in the right 
VLPFC. As betweenness reflects the transfer of information flow 
through a network45, the VLPFC may thus act as a hub to drive net-
work reconfiguration over retrieval practice. The MTL exhibited a 
generally lower yet similar trajectory to the PFC and PPC, indicating 

constant engagement in retrieval practice. Given long-term reten-
tion gains observed after consolidation, the above network recon-
figurations may be preparatory for setting up relevant connections 
to be prioritized for subsequent consolidation into long-term store.

We further found that the right VLPFC connectivity with the 
PPC during retrieval practice provided the most information to 
predict long-term retention gains. The VLPFC, a key locus that 
exerts top-down modulation of episodic retrieval, involves men-
tal elaboration and context updating27. The PPC is considered as 
an ‘output buffer’ for active representations of retrieved content 
through converging information from other cortical inputs36,40. 
Thus, the strengthened VLPFC–PPC connectivity might facilitate 
reinstatement of the target memory representation anchored in 
the PPC. With repeated retrieval, the routes between these nodes 
may have been gradually established, and the target information 
was thus weighted as a high priority. Indeed, we observed that the 
VLPFC–PPC connectivity was positively predictive of intertrial 
neural distinctiveness in the PPC that further predicted better 
long-term retention gains. Recent rodent models posit that the for-
mation of long-term memory involves early tagging and reweight-
ing of cortical networks that subsequently support the memory20,46. 
It is thus possible that the VLPFC could drive an evaluation sig-
nal to reweight the repeatedly reactivated events as important over 
retrieval practice, through which representations of the target infor-
mation in the PPC can be prioritized into a super-ordinate position 
for subsequent consolidation. Critically, the reweighted memory 
appeared to mature through subsequent consolidation, as we did 
not observe memory gains in the immediate recall, probably due 
to the possibility that they had still not matured into stabilized and 
discrete engrams21. Indeed, a recent study suggests that sleep con-
solidation is critical to preserve newly formed memory engrams via 
repeated study23.

The second aspect relates to how retrieval practice produced 
false memories at both 30-min and 24-h intervals. Behaviourally, 
this appears consistent with previous reports that retrieval increases 
the likelihood of false memory7,47. Based on the episodic context 
model, the retrieved memory could be updated by new informa-
tion from the current contexts12, which could provide additional 
cues to recall target memories. Integrating new information dur-
ing retrieval, however, might generate ‘mismatched’ episodic con-
texts among different memories, thereby leading to false memory48. 
Moreover, multiple retrieval attempts may also involve semantic or 
gist-based encoding strategies that could also generate false memo-
ries49–51. Our findings suggest that in real-world applications such as 
classrooms and clinical training, relevant strategies should be con-
sidered to minimize false memory, for instance, by incorporating 
feedback after each retrieval52,53.

We found that intertrial neural distinctiveness in the MTL for 
the RP but not NR trials emerged as the best predictor of false mem-
ory. This is reminiscent of the finding that the MTL especially the 
hippocampus is responsible for false memory54. The MTL is cru-
cial for reconstructive processes, contextual binding and recollec-
tion in episodic memory55. Episodic contexts support recollection, 
but mismatched contexts may lead to false memory. Thus, higher 
neural distinctiveness in the MTL might reflect a retrieval-mediated 
updating of new context information that could cause mismatch-
ing during multiple retrieval attempts, thereby producing more false 
memories in the recall tests. This interpretation accommodates the 
hippocampus (MTL) as a ‘fast learner’56,57, as false memory emerges 
in the immediate recall.

At the network level, unlike the VLPFC and PPC that were criti-
cal for predicting long-term retention gains, we found the most 
prominent connectivity links among the MTL and DLPFC nodes 
predicted subsequent false memories. This suggests that func-
tional coordination between these regions over retrieval practice 
was responsible for producing false memories. This is in line with  
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previous findings on the constructive nature of MTL-prefrontal epi-
sodic memory systems and the DLPFC involvement in false memo-
ries54. During retrieval practice, the MTL may be involved in active 
reconstruction of episodic memories for future use58. The DLPFC 
enables the updating of existing memories with new information34, 
which could lead to possible interference with the target memories, 
thereby producing false memories. This interpretation is supported 
by a positive correlation between hippocampal–DLPFC connectivity 
and the neural distinctiveness of the MTL in the final run. Hence it 
appears that retrieval-induced false memory is mainly supported by 
MTL-centred neural configurations, separating from the networks 
supporting the long-term retention. One could ask why true and 
false memories that are not subjectively differentiated during recall, 
but are associated with distinct neural predictors during retrieval 
practice. We suggest that the reconstructive nature of episodic 
memory59,60 may provide an explanation for this dissociation. That 
is, the dissociable neural predictors for long-term retention and false 
memory likely reflect the involvement of multiple retrieval-induced 
mnemonic and reconstructive processes that can reshape and alter 
distinct aspects of memory representations for the multidimensional 
episodic information of a retrieval event. Together, our findings 
expand previous research on retrieval practice benefits on memory, 
by highlighting that active retrieval reshapes episodic memories 
through rapid reorganization of neural representations and network 
connectivity to produce false memories.

Nevertheless, our study has some limitations. First, we did not 
directly assess how well participants engaged in the RP and NR con-
ditions, although the indirect measure of vividness and subsequent 
memory performance indicated a clear dissociation of our RP and 
NR manipulations. Second, our design could not dissociate success-
ful retrieval attempts from run-to-run during the practice phase 
and individual differences in ‘speak-out’ tendency for each trial 
may influence false memory scoring. Third, the NR might induce 
potential confounds such as suppression of associated memories61,62. 
Our data appear to neutralize this possibility, because of no any dif-
ferences between the NR and baseline conditions. Finally, although 
sleep is crucial for offline consolidation56, and may prioritize memo-
ries for retrieval63, our experimental design cannot address this pos-
sibility due to a lack of direct comparisons between sleep and wake 
intervals. Future studies are required to overcome these limitations.

In conclusion, our findings provide new evidence for distinct 
mechanisms of neural reorganization during retrieval practice that 
produce two seemly contradictory outcomes: long-term retention 
and false memories. Retrieval practice may consist of both a gradual 
refinement of neural representations and network reconfiguration 
working together with an offline process of consolidation, lead-
ing to subsequent long-term retention and false memories. Future 
studies may usefully explore this suggestion for the development 
of interventions and strategies to improve memory in both healthy 
and clinical populations.

methods
Participants. Fifty-seven young, healthy college students (32 females, range 
from 19 to 29 years of age) participated in this study. All participants were 
right-handed with normal or corrected-to-normal vision, and reported no history 
of neurological or psychiatric disease. The Institutional Review Board approved the 
ethical protocol of our study for Human Subjects at Beijing Normal University, and 
written informed consent was obtained from all participants before the experiment. 
Due to unexpected data unavailability, the sample size of false memory reduced 
to 50. Data from seven participants were excluded from further analyses due to 
excessive head motion during fMRI scanning with root mean squared motion 
parameters over a voxel’s width. This resulted in 56 participants for long-term 
retention and 50 participants for false memory as the behavioural sample size, with 
50 and 43 as their corresponding imaging data sample size, respectively.

Materials. Forty-eight pairs of face–scene associations were used in this study. 
Faces with neutral expressions were selected from a standardized Chinese face 
database61, which were carefully selected using the criteria previously reported64. 

We have obtained consents for publication from the owner of the example 
faces shown in the Fig. 1. Forty-eight complex scenes were selected from the 
International Affective Picture System with half negative and half neutral in 
emotional valence (corresponding data are provided in the Supplementary 
Methods). Faces and scenes had been used in an independent study with a minimal 
relatedness in content to each other, and matched on luminance61. Faces and scenes 
were randomly paired to create 48 face–scene associations across participants.

Experimental design and procedure. The experiment consisted of three phases: 
memory acquisition, retrieval practice and two recall tests after 30-min and 24-h 
intervals. In the acquisition phase outside the scanner, participants were trained 
to memorize 48 face–scene associations with study-test cycles. For each cycle, 
each face–scene association was presented for 6 s and participants were instructed 
to remember face–scene associations for subsequent memory tests. Thereafter, 
they performed an associative memory recognition test in which a given face in 
the upper centre of the screen and two scenes on the left and right of the lower 
screen were displayed. One scene was the correct association while the other 
one randomly selected from other associations. Participants were asked to select 
either the left or the right scene as the picture associated with that face, without 
feedback. After a cycle of associative memory tests was finished, the program 
scored the participant’s performance. The training session would continue until the 
participant reached at least 90% accuracy.

During the retrieval practice phase inside the scanner, 32 face–scene 
associations were randomly selected from the acquisition phase and the remaining 
16 associations served as the baseline condition and were not presented in this 
phase. For each trial, a face surrounded by either a blue or red rectangle frame was 
presented for 4 s. Participants were instructed to engage in either active retrieval 
practice (that is, RP, cued with a blue rectangle) or passively view the face trying 
to not retrieve the associated scene (NR, cued with a red rectangle) of the scene 
associated with the face cue. We chose the NR as a control condition with matched 
visual stimulation. Thereafter, participants were asked to rate the vividness of each 
recalled scene on a four-point scale (1 being ‘not at all’ and 4 being ‘extremely’), 
which could verify the dissociation of RP and NR manipulations (Supplementary 
Fig. 1). The original scene was not shown, in accordance with many studies on 
retrieval practice without feedback1,3,31. Trials were jittered with an intertrial 
interval varying from 2 to 6 s (averaged 4 s with 1 s steps). The entire memory 
practice phase consisted of eight runs with 2-min breaks between runs, and lasted 
36 min in total, with 4.5 min for each run.

In the memory test phase outside the scanner, memory performance for 
face–scene associations was assessed by two independent cued-recall tests after 
30-min (immediate recall) and 24-h (delayed recall) intervals. All 32 faces from 
the practice phase were randomly split into two halves as cues for the immediate 
and delayed recall tests respectively. Participants were asked to orally recall and 
describe the scenes associated of each face cue. It is worth noting that 16 face–
scene associations from the memory acquisition phase did not appear during 
the retrieval practice phase, and were also split into two halves corresponding to 
immediate and delayed recall tests. The presentation of face cues was randomized 
at test across participants. For each face cue, participants had a maximum of 30 s to 
verbally describe the associated scene with audio recording. Two raters who were 
blind to the purposes of the study, as well as the experimental design, including the 
RP and NR conditions and the two recall tests. They scored each participant’s oral 
recall independently. When inconsistences were encountered, a final score of each 
item was made by further discussion with a final consensus between the raters. All 
participants reported adequate sleep during the night after retrieval practice, with 
approximately 8 h of sleep (average 7.68 ± 1.05 h). Both the participants and the 
experimenter were blind to the purpose and hypotheses of this study.

Memory performance and behavioural analyses. To assess episodic memory 
for face–scene associations, the raters scored participants’ memory performance 
according to their oral recall of the information that was enough to identify the 
associated scenes (scored the correct or not), as well as false information recalled. 
Each participant’s memory accuracy (correct proportion) was quantified as a 
proportion of face–scene associations later remembered from all associations 
within each condition (RP, NR, baseline) at each testing (30-min, 24-h). Each 
participant’s false memory was quantified as the sum of false information recalled 
for the complex scenes associated with each cue, and only false information 
of the correctly recalled associations was counted. We further computed the 
memory retention and false memory scores for the immediate and delayed tests 
by subtracting the memory accuracy and their false memory scores from the 
corresponding baseline condition. Such subtraction could provide a measure of 
the putative effects for RP and NR conditions, since the baseline trials did not 
undergo the retrieval practice and hence represented a baseline level of memory. 
Each participant’s long-term retention gain after consolidation was computed by 
subtracting retention scores in the immediate recall test from that of the delayed 
recall test. The mean of false memory across the two recall tests was also computed 
for the RP and NR conditions. Pearson’s correlations and prediction analyses 
were conducted to assess the relationship of retrieval-induced changes in neural 
representations and network reconfiguration with long-term retention gains and 
false memory outcomes.
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Imaging acquisition. Whole-brain images were acquired on a Siemens Trio 3.0 
Tesla magnetic resonance scanner. Functional images were acquired using an 
echo-planar imaging sequence (37 slices; repetition time (TR), 2,000 ms; time 
to echo (TE), 30 ms; flip angle, 90°; voxel size, 3.5 × 3.5 × 3.5 mm; field of view, 
224 × 224 mm). High-resolution T1-weighted anatomical images were acquired by 
using a magnetization-prepared–rapid acquisition gradient echo sequence (144 
slices; TR, 2,530 ms; TE, 3.39 ms; voxel size, 1.3 × 1.0 × 1.3 mm; flip angle, 7°; field 
of view, 256 × 256 mm).

Imaging preprocessing. Brain images were preprocessed using Statistical 
Parametric Mapping toolbox (SPM8, http://www.fil.ion.ucl.ac.uk/spm). The first 
four volumes of functional images were discarded to allow for signal equilibrium. 
Remaining images were realigned to the mean image of each run and corrected 
for slice acquisition timing. Subsequently, functional images were coregistered to 
each participant’s grey matter image segmented from corresponding T1-weighted 
image and spatially normalized into the stereotactic template of the Montreal 
Neurological Institute. Finally, images were smoothed using a 6-mm full-width at 
half-maximum Gaussian kernel.

Univariate general linear model analysis. To assess task-related brain responses 
during retrieval practice, separate regressors were modelled for trials in the RP and 
NR conditions, and convolved with the canonical hemodynamic response function 
(HRF) in SPM8. Each participant’s motion parameters were included to regress out 
potential effects of head movement. We included high-pass filtering using a cutoff 
of 1/128 Hz to remove high frequency noise and corrections for serial correlations 
using a first-order autoregressive model (AR(1)) in the general linear model 
(GLM) framework.

Contrast parameter estimate images for task-related brain responses in RP 
(or NR) condition generated at the individual-participant level were submitted to 
subsequent analyses for multi-voxel pattern similarity and fidelity analyses over the 
course of retrieval practice.

To further assess trial-wise brain responses for the RP and NR trials during  
the practice phase, each trial was modelled as a separate regressor and convolved 
with the HRF implemented in SPM8. This resulted in a total of 32 regressors for 
each run, with 16 RP trials and 16 NR trials. The other parameter settings were 
the same as the univariate GLM for task-related estimation of brain responses. 
Contrast parameter estimate images for each RP/NR trial, initially generated  
at the individual-participant level, were submitted to subsequent analyses for 
intertrial multi-voxel pattern distinctiveness over eight runs in RP and NR 
conditions separately.

ROI selection. To define a memory-related brain mask, we used the NeuroSynth 
platform for large-scale, automated synthesis of fMRI data (http://neurosynth.org) 
with ‘memory retrieval’ as a search term and generated a reverse inference mask. 
We then refined the mask using a criterion of a height threshold of P < 0.001 (z > 
3.0) and a spatial extent cluster size of more than 30 voxels. Then, the whole-brain 
mask was segmented into 15 ROI based on spatially contiguous voxels. These ROI 
included the left VLPFC, right VLPFC, left DLPFC, orbito-inferior frontal gyrus, 
dorsal anterior cingulate cortex, medial PFC, right superior frontal cortex, right 
hippocampus, left hippocampus, left anterior temporal lobe, temporal pole or 
anterior MTL, right LPC, left LPC, precuneus and posterior cingulate cortex.

Neural pattern similarity. Three multi-voxel neural pattern metrics were 
computed to characterize changes in retrieval-induced multi-voxel pattern 
similarity over the course of retrieval practice. The first one referred to neural 
pattern similarity over eight runs during retrieval practice. The z score map of 
retrieval-induced neural activation pattern was first obtained from the NeuroSynth 
platform as a canonical reference by using the overall brain mask defined above. 
Multi-voxel activity patterns for RP and NR conditions were then separately 
extracted from the same mask in each run. And then we computed Pearson’s 
correlation coefficients for the respective multi-voxel patterns of RP and NR with 
the canonical reference map for each run. Thereafter, correlation coefficients were 
Fisher’s z transformed and submitted to compute neural pattern similarity across 
eight runs for RP and NR separately.

Ssimilarity = Corr (Xi, Y) i ∈ [1 : 8]

where Xi is condition-related activity patterns of run i for each condition, and Y is 
multi-voxel activity pattern from the NeuroSynth.

The other metrics, reflecting condition-related neural fidelity and trial-specific 
neural similarity, are described in the Supplemental Methods.

Intertrial neural pattern distinctiveness. A neural pattern distinctiveness 
metric was computed to characterize changes in intertrial multi-voxel activity 
pattern dissimilarity among RP (or NR) trials over the course of eight-run 
retrieval practice. The multi-voxel activity patterns for each trial in the RP (or 
NR) condition was extracted from the mask in each run. We then computed their 
corresponding Pearson’s correlation coefficients with activity patterns of other 
remaining trials from the same condition of the same run. These coefficients 

were transformed into Fisher’s z scores and averaged, and the average was then 
subtracted from one to yield a distinctiveness metric for each run. The formula  
as follows:

Sdist =
∑n−1

i=1
∑n

j=i+1
[

1 − Corr
(

Ti, Tj
)]

n(n − 1)/2

where n is the total number of trials in each condition, Ti is trial-related activity 
pattern associated with trial i and Tj is trial-related activity pattern for trial j from 
the same condition of the run. We then fitted the linear function (y = a × x + b, 
where x denotes the run number from one to eight and y denotes the intertrial 
neural distinctiveness) to the dynamic neural pattern distinctiveness. Due to 
the last run (the eighth run in this study) representing the final brain state after 
memory practice, we used the eighth run for further correlational analyses with 
memory performance as implemented by previous studies27.

Network construction. Network nodes consisted of the 15 ROI above. For 
each participant, a 15 × 15 connectivity matrix was created for the RP (or NR) 
condition in each run by using gPPI analysis. The gPPI approach was widely 
used to assess task-dependent functional connectivity of a specific seed or ROI 
with the rest of the brain, after removing potential confounds of overall task 
activation and common driving inputs65. Specifically, mean time series from 
each seed ROI were extracted and then deconvolved so as to uncover neuronal 
activity (that is, physiological variable) and multiplied with the task design 
vector contrasting the RP condition versus the fixation condition (that is, a 
binary psychological variable) to form a psychophysiological interaction (PPI) 
vector. This interaction vector was convolved with a canonical HRF to form the 
PPI regressor of interest. The psychological variable representing task design 
(RP versus fixation) as well as mean-corrected time series of each seed ROI  
were also included in the GLM to remove overall task-related activation and  
the effects of common driving inputs on brain connectivity. To ensure  
normality, connectivity values of each task condition were Fisher’s z 
transformed. Note that only the voxels within the 15 ROI were included in  
this analysis to save computational resources. Separate gPPI analyses were 
conducted for each seed ROI to assess its task-dependent functional connectivity 
with the remaining ROI.

Network-based brain–behaviour prediction analysis. Network matrices 
derived from the gPPI analyses were submitted to subsequent brain–behaviour 
prediction analyses based on machine learning algorithms using the LIBSVM 
toolbox (http://www.csie.ntu.edu.tw/~cjlin/libsvm/). The matrix connectivity 
data across eight runs were treated as the input variable, and long-term retention 
gains (or false memories) as the output variable. Separate SVR models were 
trained using a classic leave-one-out cross-validation approach to predict 
individual’s long-term retention gains or false memory outcomes independently 
(Supplementary Fig. 7). All feature ranking and selection (Supplementary  
Fig. 7a,b) were carried out on the training data only, without examining the 
test data. This approach was iterated to compute the predicted scores for each 
individual. We then calculated Pearson’s correlation coefficients between 
predicted and observed scores as the prediction accuracy to quantify the 
strength of the brain–behaviour relationship.

Feature ranking and selection were subsequently performed. For each model, 
we obtained the predictive weight for each link, which was sorted in descending 
order. Only links whose weights were above certain thresholds were selected 
as input features in the model for the follow-up stepwise prediction procedure. 
Following the convention in the field, we implemented a set of different 
thresholds and obtained the top 1% of links to achieve the best prediction 
accuracy (Supplementary Fig. 7a). The statistical significance of prediction 
accuracy was assessed by a permutation test procedure. For each permutation, 
we randomly shuffled behavioural scores, and then computed the brain–
behaviour prediction accuracy. This procedure was iterated 1,000 times for each 
run. Thereafter, 1,000 permutated prediction values were sorted in descending 
order, and the significance P values of 0.01 and 0.05 were respectively computed 
by dividing the position number (that is, the prediction accuracy located) by 
1,000 for each run. Thereafter, two-step prediction procedures were used to 
characterize the dynamic changes in brain–behaviour prediction values and how 
the selected links evolved over eight-run retrieval practice. Since the selected 
features differed slightly from iteration to iteration due to the leave-one-out 
approach, we first identified the consensus functional connectivity66 with stable 
features (>50%) across iterations67,68. Then, we projected those links back to each 
run to track their evolutionary trajectories over the progression of eight runs 
in a cumulative way, and further trained a stepwise prediction model to predict 
each individual’s long-term retention gains (or false memory scores). It is worth 
noting that these stepwise analyses were conducted for confirmatory purposes 
to characterize how retrieval-induced network reconfigurations contributed to 
subsequent memory outcomes, rather than to determine the generalizability 
for the other samples69. Finally, the selected links were submitted for graph 
theoretical analyses and network visualization by superimposing onto a glass 
brain template.
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Global efficiency. Global efficiency represents the average inverse shortest path 
length in a network, and is inversely related to the characteristic path length. 
Global efficiency is defined as

Eglobal =
1

N(N − 1)
∑

i ̸=j∈G

1
dij

where N denotes the total nodes in a network, and G is the network graph, i 
and j are ROI, dij denotes the length of the shortest path between node i and j. A 
brain network with higher global efficiency reflects more efficient information 
communication across different nodes.

Betweenness. As one of the most frequently used metrics in network analysis, 
betweenness centrality represents the degree to which information passes through 
a node. The more information that passes through a node, the higher the influence 
this node has on a network42. It was computed according to the networks with 
selected features from prediction analysis. Specifically, links that were predictive of 
an individual’s long-term retention gains after consolidation were maintained and 
the remaining ones were set to 0. Thereafter, the resultant networks were entered 
into GRETNA for network analysis (https://www.nitrc.org/projects/gretna/). The 
betweenness centrality of node i was defined as follows:

bi =
1

(n − 1) (n − 2)
∑

h, j ∈ N

h ̸= j, h ̸= i, j ̸= i,

ρ
(i)
hj

ρhj

where N is the set of all nodes in the network and n is the number of nodes. ρhj is 
the number of shortest paths between h and j, and ρ(i)

hj  is the number of shortest 
paths between h and j that pass through i.

Statistical analysis. Statistical testing for behavioural and imaging data was 
performed using R (v.3.4.1) and MATLAB (v.R2016a), respectively. Values are 
presented as mean ± s.e.m., unless indicated otherwise. Repeated ANOVAs and 
Student’s t-tests were used to assess differences between conditions of interest for 
equal variances, when normality was assumed. The effect size for repeated-measures 
ANOVA is partial η2 (indicated as η2

p). The effect size for paired samples t-tests was 
calculated using Cohen’s d. We reported a 95% confidence interval for t-tests, and 
90% confidence interval for F-tests, which two have been considered as equal70. 
Pearson’s correlation r was used to assess the relationship between variables. The 
data met the assumptions of the statistical tests used, that is, normality and equal 
variances were formally tested. The two-tailed P values are reported for statistical 
testing, except where otherwise specified. The permutation test was implemented 
for the prediction analyses. To further quantify the level of evidence for the null 
hypotheses, we calculated the Bayes factor using the JASP software (v.0.14.1,  
https://jasp-stats.org/). The Bayes factor analyses were based on the default priors 
for ANOVA and paired t-test design (scale r on an effect size of 0.707).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the necessary behavioural and brain imaging data are available from  
https://github.com/QinBrainLab/2017_RetrievalPractice. Source data are provided 
with this paper.

Code availability
All of the necessary behavioural and brain imaging codes are available from  
https://github.com/QinBrainLab/2017_RetrievalPractice.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection SIEMENS MAGNETOM 3.0 Tesla TrioTim syngo; E-prime 2.0.10

Data analysis Matlab2015b; SPM8 for fMRI data analysis; LIBSVM toolbox for prediction analysis; GRETNA for network analysis; Workbench, BrainNet 
Viewer and ggplot2 for visualization; the template was obtained from the NeuroSynth website; JAPS for Bayes factor analyses
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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The data and codes from this study are available from https://github.com/QinBrainLab/2017_RetrievalPractice,  and brain imaging data are available from the 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In total, there were 57 subjects participated this study. Due to some unexpected data unavailability, in the end, here were 56 data for long-
term retention and 50 data for false memory as the behavioral sample size, with 50 and 43 as their corresponding imaging data sample size, 
respectively.  It is a relatively large sample size in neuroimaging studies based on prior experience of the investigators with similar 
experiments previously published.

Data exclusions Data from seven participants were excluded from further analyses due to excessive head motion during fMRI scanning with root mean 
squared motion parameters over a voxel's width.

Replication Our study undertook several steps to improve reproducibility. First, we had a relatively large sample size (N=57) to gain the robustness and 
the stability of our behavioral and neuroimaging findings.  Second, we opted experimental designs to test the robust benefits of retrieval 
practice that have been shown by previous behavioral studies. Third, we employed both conventional and innovative analytic approaches to 
test the significance of our behavioral and neuroimaging data, including support vector regression, machine learning based leave-one-out 
cross validation, non-parametric permutation test.

Randomization It's a within-subject design without participants allocation. Participants were recruited randomly.
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Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Fifty-seven young, healthy college students (32 females, range from 19 to 29 years old) participated in this study. All 
participants were right-handed with normal or corrected-to-normal vision, and reported no history of neurological or 
psychiatric disease. 

Recruitment Participants were recruited by advertisement and flyers.

Ethics oversight Beijing Normal University

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Event-related design

Design specifications 8 runs; 32 trials per run; the length of each trial: 1s fixation + 4s conditional operation + 1s rating+ 2-6s ITI

Behavioral performance measures Whether subjects were performing the task as instructed was confirmed by the difference of vividness rating. Retrieval 
practice yielded significantly higher vividness rating (mean ± S.D., 3.21 ± 0.40) as compared to control condition (1.73 ± 
0.26) (t(56) = 26.55, p < 0.001). 

Acquisition

Imaging type(s) functional and structural

Field strength 3.0 Tesla

Sequence & imaging parameters Functional images were acquired by using an echo-planar imaging sequence (37 slices; TR, 2000ms; TE, 30ms; flip angle, 
90°; voxel size, 3.5 × 3.5 × 3.5mm; FOV, 224 × 224mm). High-resolution T1-weighted anatomical images were acquired 
by using a magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence (144 slices; TR, 2530ms; 
TE,3.39ms; voxel size, 1.3 × 1.0 × 1.3mm; flip angle, 7°; FOV, 256 × 256mm).

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software SPM8

Normalization Functional images were co-registered linearly to each participant’s gray matter image segmented from corresponding high-
resolution T1-weighted image and spatially non-linearly normalized into the stereotactic template of the Montreal 
Neurological Institute (MNI)

Normalization template Montreal Neurological Institute (MNI152)

Noise and artifact removal Each participant’s motion parameters from the realignment procedure were included to regress out potential effects of head 
movement on brain response. We included high-pass filtering using a cutoff of 1/128 hz to remove high frequency noise and 
corrections for serial correlations using a first-order autoregressive model (AR(1)) in the GLM framework.

Volume censoring The first 4 volumes of functional images were discarded for signal equilibrium.

Statistical modeling & inference

Model type and settings Univariate general linear model (GLM) :separate regressors of interest were modeled for RP and NR conditions, and 
convolved with the canonical hemodynamic response function (HRF) implemented in SPM8. In addition, each participant’s 
motion parameters from the realignment procedure were included to regress out potential effects of head movement on 
brain response.  Trial-wise estimation of brain response: each cue was modeled as a separate regressor and convolved with 
the HRF implemented in SPM8. This resulted in a total of 32 regressors for each run. The other parameter settings were the 
same as above univariate GLM for task-related estimation of brain responses.  Neural representation stability: The z-score 
map of neural activation pattern was first obtained from the Neurosynth platform as a canonical reference. The multivoxel 
activity patterns on each run were separately extracted from the same mask, and then computed their corresponding 
Pearson’s correlation coefficients with the canonical reference map respectively. Thereafter, correlation coefficients were 
Fisher’s z-transformed and submitted to compute neural representation stability.  Neural representation distinctiveness: The 
multivoxel activity pattern for each trial during retrieval practice was extracted from the mask in each run. We then 
computed their corresponding Pearson’s correlation coefficients with neural activity patterns of other remaining trials from 
the same condition of the same run. These coefficients were transformed into Fisher’s z-scores and averaged, then the 
average was subtracted from 1 to yield the distinctiveness metric for each run.

Effect(s) tested Standard two-tailed t-tests are used to determine the most of significant differences. Prediction accuracy was examined by 
permutation test.

Specify type of analysis: Whole brain ROI-based Both
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Anatomical location(s)

A reverse inference mask at the whole brain level was generated from the Neurosynth platform by using 
search term "memory retrieval", this memory-related mask included the left ventral lateral prefrontal 
cortex (l_VLPFC), right ventral lateral prefrontal cortex (r_VLPFC), left dorsal lateral prefrontal cortex 
(l_DLPFC), orbito-inferior frontal gyrus (orbIFG), dorsal anterior cingulate cortex (dACC ), ventral medial 
prefrontal cortex (vmPFC), right superior frontal cortex (r_SFG), right hippocampus (r_HPC), left 
hippocampus (l_HPC), anterior temporal lobe (ATL), anterior medial temporal lobe (aMTL), right lateral 
parietal cortex (r_LPC), left lateral parietal cortex (l_LPC), precuneus (PrC) and posterior cingulate cortex 
(PCC).

Statistic type for inference
(See Eklund et al. 2016)

Voxel-wise

Correction Permutation test

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Task-related functional connectivity using full name of (gPPI) 

Graph analysis weighted graph; subject-level; node summaries; participation coefficient; betweenness

Multivariate modeling and predictive analysis RSA in conditional and trial-wise level; brain-behavior prediction analyses using the LIBSVM toolbox (Support 
Vector Regression, SVR); features extraction based weights; leave-one-out approach; permutation test that 
prediction procedure using random data was iterated 1000 times
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