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ABSTRACT

BACKGROUND: The synergic interaction of risk genes and environmental factors has been thought to play a critical
role in mediating emotion-related brain circuitry function and dysfunction in depression and anxiety disorders. Little,
however, is known regarding neurodevelopmental bases underlying how maternal negative parenting affects
emotion-related brain circuitry linking to adolescent internalizing symptoms and whether this neurobehavioral
association is heritable during adolescence.

METHODS: The effects of maternal parenting on amygdala-based emotional circuitry and internalizing symptoms
were examined by using longitudinal functional magnetic resonance imaging among 100 monozygotic twins and
78 dizygotic twins from early adolescence (age 13 years) to mid-adolescence (age 16 years). The mediation
effects among variables of interest and their heritability were assessed by structural equation modeling and
quantitative genetic analysis, respectively.

RESULTS: Exposure to maternal negative parenting was positively predictive of stronger functional connectivity of
the amygdala with the ventrolateral prefrontal cortex. This neural pathway mediated the association between negative
parenting and adolescent depressive symptoms and exhibited moderate heritability (21%).

CONCLUSIONS: These findings highlight that maternal negative parenting in early adolescence is associated with the
development of atypical amygdala-prefrontal connectivity in relation to internalizing depressive symptoms in mid-

adolescence. Such abnormality of emotion-related brain circuitry is heritable to a moderate degree.

https://doi.org/10.1016/j.biopsych.2020.08.002

Internalizing symptoms, such as depression and anxiety,
emerge and develop rapidly during adolescence (1-3). Empir-
ical research indicates that negative parenting plays an
important role in the etiology of adolescent internalizing issues
(4,5). It has long been believed that the association between
negative parenting and depression or anxiety symptoms is
associated with dysfunction of emotion-related brain circuitry
and networks, which involves multiple genetic and environ-
mental sources (6-8). Recent efforts have examined how the
synergic interaction among risk environmental factors and
genes affects the risk of emotional health problems (9,10).
Negative parenting may affect adolescent internalizing symp-
toms, at least in part, through its influence on emotion-related
brain circuitry (11-13). The amygdala, as a key structure within
this circuitry, encompasses multiple subregions with distinct
anatomical connectivity with other brain regions, including the
prefrontal cortex (PFC) (14,15). During adolescence, the brain
undergoes a developmental leap from relative immaturity to a
more mature state, with dynamically strengthening and weak-
ening connections among limbic and prefrontal regions critical for
affective and cognitive functions (16-23). In particular, adolescent
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brain development, characterized by rapid maturation of limbic
regions but relative immaturity of PFC, is highly vulnerable and
sensitive to harmful environmental exposure (24-28). For example,
adolescents reporting negative family relationships are more likely
to show longitudinal increases in risk-taking behavior through
higher ventrolateral PFC (vIPFC) activation during cognitive con-
trol (29). Individuals exposed to high childhood family stress
exhibit reduced amygdala reactivity and a positive correlation
between amygdala and vIPFC activation in response to emotional
stimuli (30). Thus, negative parenting may affect the maturation of
amygdala-vIPFC circuitry during adolescence. However, no
studies to date have investigated this assumption.
Dysconnectivity of the amygdala and prefrontal circuitry has
been consistently reported among individuals with depression
and anxiety symptoms (31,32). Recent evidence suggests that
increased functional connectivity between the amygdala and
vIPFC may be a characteristic of brain circuitry for internalizing
symptoms among young adults (33). Notably, a longitudinal
study demonstrated that increased amygdala-prefrontal
intrinsic functional connectivity mediates the association be-
tween early-life stress in childhood and internalizing
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depressive symptoms in adolescence (34). Furthermore, a
recent study demonstrated that functional interactions among
amygdala, vIPFC, and medial PFC (mPFC) are responsible for
age-related developmental improvement in cognitive regula-
tion of emotion throughout childhood and adolescence (19).
Many recent studies also demonstrated that functional coor-
dination among amygdala, vIPFC, and other regions is critical
for emotion perception and appraisal as well as cognitive
regulation of emotion in both healthy and psychiatric condi-
tions (35-38). These findings indicate that the amygdala-vIPFC
circuitry may serve as a candidate neural pathway underlying
the adverse effects of negative parenting exposure on inter-
nalizing symptoms during adolescence.

Both depression and anxiety are thought to result from a
consequence of the synergic interaction of risk genes and
environmental factors (8,39,40). As risk genes are considered
to shape brain structure and function at the molecular and
cellular levels (41), neuroimaging genetic studies usually take
neural phenotypes as a function of genotype (6). In fact, the
neural phenotypes of depression and anxiety disorders
involving the amygdala and the PFC are influenced by the in-
teractions among genetic and environmental factors (8,42).
Twin neuroimaging designs are useful approaches that offer a
unique opportunity to disentangle genetic and environmental
effects on brain structure and function. Recent twin studies
report significant genetic influences on resting-state brain
networks in both children (43) and adults (44,45). However,
little information is available regarding whether intrinsic func-
tional organization of the amygdala with other brain regions,
especially those relevant to the etiology of internalizing
symptoms, are heritable.

There is increasing evidence to show that risk environmental
factors such as maternal parenting and genes work together to
influence brain development during adolescence, which in turn
leads to heightened internalizing symptoms (9,42,45-47).
However, studies deciphering the underlying neuro-
developmental pathways of these environmental and genetic
interactions are rare. Here we conducted a longitudinal twin
study of 108 pairs of same-sex adolescent twins, which ex-
tends our prior behavioral studies on interactions between
gene and stressful life events in predicting adolescent inter-
nalizing symptoms (48,49). Maternal parenting was assessed
in early adolescence, resting-state functional magnetic reso-
nance imaging (fMRI) was obtained in mid-adolescence, and
persistent internalizing symptoms were assessed during mid-
adolescence. We implemented intrinsic functional connectiv-
ity analysis of resting-state fMRI data to investigate the
influence of negative maternal parenting on large-scale func-
tional connectivity of the amygdala. Next, structural equation
modeling was conducted to assess whether amygdala-based
functional circuits mediated the association between
maternal parenting and persistent depressive and anxiety
symptoms. Finally, genetic modeling was performed to esti-
mate the heritability of amygdala-based functional circuits.
Based on previous findings of adverse experiences and
amygdala-prefrontal development in adolescents, we hypoth-
esized that exposure to maternal negative parenting would be
associated with increased intrinsic functional connectivity of
the amygdala-prefrontal circuitry. This neural pathway would
account for the effect of maternal negative parenting on

adolescent internalizing symptoms, which would be heritable
according to genetic modeling of environmental and genetic
interactions.

METHODS AND MATERIALS

Participants

Data were obtained from BeTwiSt (Beijing Twin Study), a lon-
gitudinal research project designed to investigate how genes,
the environment, and their interplay influence mental health
among a representative sample of Beijing adolescents 10-18
years of age (50). A subsample of 108 pairs of same-sex
twins of Han ethnicity who underwent fMRI scanning was
included in this study. Two waves of data collection were
performed. In wave 1 assessment, when all the twins entered
early adolescence, participants were asked to report their
maternal parenting and stressful life events. Depression
symptoms and anxiety were assessed in wave 2 when all the
participants entered mid-adolescence. fMRI was conducted in
wave 2. Twins’ zygosity was determined by DNA analyses with
9 short tandem repeat loci. An overall accuracy of zygosity
determination was estimated to be 99.99%. All participants
were typically developing and reported no history of cranio-
cerebral trauma or neurological or psychiatric disorders. There
were 19 pairs of twins excluded from further analyses owing to
either incomplete neuropsychological assessment or exces-
sive head motion during scanning. Hence the final sample
included 50 monozygotic pairs (25 male pairs) and 39 dizygotic
pairs (17 male pairs) with good-quality fMRI and behavioral
data. Mean (SD) age of these 89 pairs of twins was 12.67 (0.86)
years in wave 1 and 16.03 (0.86) years in wave 2. All adoles-
cents and their parents signed informed consent forms. The
Ethics Committee of the Institute of Psychology at the Chinese
Academy of Sciences approved all study procedures.

Neuropsychological Assessments

In wave 1, adolescents rated their maternal parenting behavior
during the past 12 months on a 5-point scale ranging from 1
(never) to 5 (always) that assessed two dimensions of negative
parenting, harshness (e.g., hit you, 3 items) and hostility (e.g.,
swear at you, 6 items), and two dimensions of positive
parenting, inductive reasoning (e.g., ask you what you think
before making a decision about you, 5 items) and warmth (e.g.,
act loving and affectionate toward you, 8 items) (51-53). ltems
of maternal negative parenting and positive parenting were
summed separately, so that higher scores on the negative
parenting subscale indicated more negative and/or stressful
environmental exposure, while higher scores on the positive
parenting subscale indicate more positive environmental
exposure. Our previous study proved that these scales have
good psychometric properties when used in Chinese adoles-
cent samples (49). Participants also reported stressful life
events (SLEs) that occurred in their daily life during the past 12
months with a modified version of the Life Events Checklist
(54). The number of SLEs was summed, and scores ranged
from 0 to >6 to indicate adolescent life stress. In wave 2,
adolescents reported their depressive symptoms with the
Children’s Depression Inventory (55,56). Their susceptibility to
experiencing anxious thoughts was measured with the Trait
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subscale of Form Y of the State-Trait Anxiety Inventory (57,58),
which has been used in multiple studies to investigate anxious
characteristics in nonclinical samples (59). Both the Children’s
Depression Inventory and the State-Trait Anxiety Inventory
Trait subscale of Form Y were applied twice, at the same time
as fMRI scanning and 1.5 years before fMRI scanning. Average
scores of both scales were used to ensure a stable and
persistent measurement of participants’ internalizing symp-
toms during their mid-adolescence (60), with higher scores
indicating more serious symptoms.

Image Data Acquisition

In wave 2, brain imaging data were acquired on a 3.0T MRI
scanner (Siemens Healthineers AG, Erlangen, Germany) in the
Beijing MRI Center for Brain Research. Whole-brain resting-
state functional images were collected in 32 axial slices using
an echo-planar imaging sequence (repetition time 2000 ms,
echo time 30 ms, flip angle 90°, matrix 64 X 64, field of view 22
cm, voxel size 3.5 X 3.5 X 4 mm, slice thickness 3 mm, slice
gap 1 mm, 180 volumes for 24 pairs of twins and 225 volumes
for 84 pairs of twins), aligned along the anterior commissure—
posterior commissure line. Scan duration was 6 minutes for
24 pairs of twins and 7.5 minutes for 84 pairs of twins. During
the scanning procedure, participants were explicitly instructed
to remain still and awake with their eyes closed. High-
resolution structural images were acquired axially using a
three-dimensional gradient recalled sequence (repetition time
2530 ms, echo time 3.37 ms, flip angle 7°, matrix 256 X 192,
slice thickness 1.33 mm).

Image Data Preprocessing

Data preprocessing was performed using SPM8 (http://wwwfil.
ion.ucl.ac.uk/spm). The first and last 5 volumes were discarded
to account for magnetic field stabilization. The functional im-
ages were realigned to correct for head motion. Nineteen twin
pairs were excluded because root mean squared head motion
exceeded a voxel’s width during MRI scanning (61). Subse-
quently, realigned volumes were slice-timing corrected,
normalized into a standard stereotaxic anatomical Montreal
Neurological Institute space, and resampled into 2-mm
isotropic voxels. Functional images were spatially smoothed
using an isotropic Gaussian filter of 6 mm full width at half
maximum. Linear detrend and filtering (0.008-0.1 Hz) were
applied.

Intrinsic Functional Connectivity Analysis

The region of interest masks for the amygdala were defined by
the automated anatomical labeling atlas (62). The left and right
amygdala were separately selected as two seed regions. The
Eigen time series within each seed was extracted from
bandpass-filtered images, then submitted into an individual-
level fixed-effects analysis under the framework of the gen-
eral linear model to assess each seed-based intrinsic func-
tional connectivity. Six motion parameters and white matter
and cerebrospinal fluid signals were included as nuisance
covariates to account for physiological and movement-related
artifacts. Additional control analyses with extensive steps were
conducted to account for potential effects related to micro-
motion and physiological artifacts, involving 24 head motion
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parameters (i.e., 6 head motion parameters, 6 head motion
parameters one time point before, and the 12 corresponding
squared items) and white matter and cerebrospinal fluid sig-
nals (63-68).

To examine whether maternal parenting in wave 1 predicted
intrinsic functional connectivity of the left and right amygdala, a
connectivity map of each seed region was submitted into a
second-level multiple regression analysis, with maternal
negative and positive parenting score as the covariate sepa-
rately, by controlling sex, wave 2 age, and SLEs as covariates
of no interest. Only clusters significant at a height threshold of
p < .001 and an extent threshold of p < .05 with 3dClustSim
correction for multiple comparisons are reported. Parallel an-
alyses were also conducted for each amygdala subregion,
including the basolateral, centromedial, and superficial amyg-
dala in the left and right hemispheres (see Supplement).

Mediation Analysis

Before mediation analysis, average values representing con-
nectivity strength were extracted from 7 significant clusters
identified in the above regression analyses to examine the
correlation of these connectivity measures with internalizing
symptoms. To control false-positives, we used the number of
regions identified from the amygdala connectivity analyses for
Bonferroni correction (p < .05/9 = .005). Only significant
clusters in the vIPFC remained significant after correction.
Structural equation modeling was then constructed to examine
the mediating effect of amygdala-vIPFC connectivity on the
relationship between maternal parenting and internalizing
symptoms using Mplus 7.0 (69), with sex, wave 2 age, and
SLEs as covariates. Overall model fit indices were considered
acceptable if they had a nonsignificant %2 value, a root mean
square error of approximation below 0.08 to 0.10, a compar-
ative fit index at 0.93 or above, and a standardized root mean
square residual at <0.08 (70). Moreover, both direct and indi-
rect effects of maternal parenting on adolescent internalizing
symptoms were estimated using bias-corrected bootstrapping
resampling method with 1000 resamples and relevant 95%
confidence interval (71).

Quantitative Genetic Analysis

The heritability of average connectivity values that served as a
significant mediator was computed using a univariate ACE
model in the OpenMx package for R (R Foundation for Sta-
tistical Computing, Vienna, Austria) (72,73). According to the
assumption of behavioral genetics, each phenotype difference
between twins can be decomposed into additive genetic (A),
shared environmental (C), and nonshared environmental (E)
effects (74,75). Shared environment refers to a nongenetic in-
fluence that results in the similarity within twin pairs, while
nonshared environment results in the differences within twin
pairs, which also includes a measurement error. A full ACE
model, which contained all the A, C, and E factors, was
examined initially, and then submodels (AE, CE, and E models)
were nested within the full model. Statistical inference was
obtained by comparing %2 differences between the full model
and a submodel. A nonsignificant %2 difference and the
smallest Akaike information criterion was chosen as the
optimal model (76).
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Table 1. Statistics and Bivariate Correlations of Study Variables

Variables
Variables 1 2 3 4 5 6 7 Mean (SD) Range
1. Maternal Negative Parenting® - - - - - - - 19.51 (6.55) 9-41
2. Maternal Positive Parenting® —0.44° - - - - - - 47.95 (10.91) 21-65
3. Depressive Symptoms® 0.32° —-0.29° - - - - - 37.81 (6.18) 27-54.50
4. Trait Anxiety® 0.27° —-0.26° 0.85° - - - - 39.62 (8.23) 21-64.5
5. SLEs® 0.20¢ -0.06 0.36° 0.36° - - - 3.12 (2.77) 0-14
6. Sex —0.06 -0.12 0.12 0.12 0.61 - - - -
7. Wave 2 Age —0.08 0.04 -0.15 —0.08 -0.12 0.11 - 16.03 (0.86) 14-17
8. Mean FD —-0.10 0.04 0.04 0.01 0.02 —-0.20¢ —0.07 0.15 (0.05) 0.06-0.31

FD, framewise displacement; SLEs, stressful life events.
?Data collected in wave 1.

Pp < .001.

°Data collected in wave 2.

9 < .01.

RESULTS

Participant Demographics and Behavioral
Association

Table 1 presents behavioral measurements and statistics for
the final sample of 89 twins. Bivariate Pearson’s r (2-tailed)
correlation coefficients among behavioral variables revealed
that negative parenting was positively correlated with SLEs
and internalizing symptoms (both r = .20, p < .01). Depressive
symptoms were positively correlated with trait anxiety. The
mean framewise displacement during scanning was not
significantly correlated with maternal parenting or adolescent
internalizing symptoms (Table 1).

Maternal Parenting in Early Adolescence Predicts
Amygdala Intrinsic Functional Connectivity in Mid-
adolescence

First, we analyzed how maternal negative parenting modulates
amygdala intrinsic functional connectivity patterns. Seed-
based intrinsic functional connectivity analysis for the left
and right amygdala as separate seeds revealed very robust
functional connectivity of the amygdala with a widely distrib-
uted network of regions (Figures S1 and S2). We conducted
separate multiple regression analyses for each amygdala-
seeded functional connectivity pattern with maternal negative
parenting as a covariate of interest, by controlling for sex, age,
and SLEs. This analysis revealed that maternal negative
parenting significantly predicted intrinsic connectivity of the left
amygdala with distributed regions in the left inferior frontal
gyrus (located at the anterior portion of the vIPFC), left middle
temporal gyrus, and bilateral middle cingulate cortex as well as
intrinsic functional connectivity of the right amygdala seed with
regions in the left inferior frontal gyrus and right precentral
gyrus (Table 2; Figures 1 and 2). Parallel control analyses with
extensive steps were conducted to ensure that motion artifact
did not contaminate the data (Table S1). These analyses
replicated a very similar pattern of amygdala connectivity
target regions predicted by maternal negative parenting
(Figure 1; Table S1; Figure S3). There was no reliable effect
pertaining to maternal positive parenting. These results indi-
cate that maternal negative parenting in early adolescence
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predicts amygdala-based intrinsic functional connectivity later
in mid-adolescence.

Negative Parenting Predicts Adolescent
Internalizing Symptoms via Amygdala-viPFC
Connectivity

We investigated the relationships between negative parenting,
internalizing symptoms, and amygdala intrinsic functional
connectivity. Among target regions of the amygdala connec-
tivity predicted by maternal negative parenting, only connec-
tivity between the left amygdala and the left vIPFC (r = .26, p =
.001) significantly correlated with adolescent depressive
symptoms after correction for multiple comparisons (o = .009,
Bonferroni corrected) when covariation of trait anxiety was
considered. No other amygdala connectivity target regions
retained a significant correlation with trait anxiety when
covariation of adolescent depressive symptoms was consid-
ered (Table S2).

We further investigated the association of maternal negative
parenting with internalizing symptoms, considering a potential

Table 2. Amygdala Intrinsic Functional
Predicted by Maternal Negative Parenting

Connectivity

Seed Regions R/L  t Value MNI (xy z)  Voxels
L Amygdala IFGtri/vVIPFC L 4.20 —28 34 14 80
MTG L —3.98 —46 —52 14 88
MCC R —4.86 10 —14 36 84
L —-3.97 —-14 -6 40 89
MOG R -3.91 40 -78 6 40
R Amygdala  ORBinf L —4.18 —-4022 -8 144
PreCG L —3.80 —54 -12 38 66
R —4.31 46 —8 40 232
STG R —4.10 44 —40 6 43

Significant clusters are determined by a height threshold of p < .001
and an extent threshold of p < .05 corrected for multiple comparisons.

IFGtri, inferior frontal gyrus triangular part; L, left; MCC, middle
cingulate cortex; MNI, Montreal Neurological Institute; MOG, middle
occipital gyrus; MTG, middle temporal gyrus; ORBinf, inferior frontal
gyrus orbital part; PreCG, precentral gyrus; R, right; STG, superior
temporal gyrus; VIPFC, ventrolateral prefrontal cortex.
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Figure 1. Amygdala intrinsic functional connectivity in mid-adolescence predicted by negative parenting in early adolescence. (A, B) Lateral views of
significant clusters in distributed brain regions whose connectivity with the left and right amygdala seeds was positively (red) and negatively (blue) predicted by
maternal negative parenting. Target regions include the left inferior frontal gyrus—anterior portion of the ventrolateral prefrontal cortex (VIPFC), left middle
temporal gyrus (MTG), right superior temporal gyrus (STG), right middle occipital gyrus (MOG), and left precentral gyrus (PreCG). (C, D) Lateral views
of significant clusters in distributed brain regions from control analyses with extensive steps (see Methods and Materials) to mitigate motion-related artifacts.

L, left; R, right.

mediating effect of amygdala connectivity with the left vIPFC
identified above (Figure 3). Thus, we tested an indirect pathway
in which maternal negative parenting predicted adolescent
depression via amygdala connectivity with the left vIPFC with
sex, wave 2 age, SLEs, and trait anxiety as covariates of no
interest (Figure 3). The model accounted for 75.3% of the
variance in adolescent depressive symptoms when trait anxi-
ety was included and revealed a significant mediating effect of
amygdala connectivity with the left VIPFC (indirect effect =
0.03; bootstrapped 95% confidence interval = 0.009-0.054).
Additionally, given that data collecting time of internalizing
symptoms and neuroimaging overlapped, another mediation
model was constructed with the positions of depressive
symptoms and brain connectivity reversed. This model fit was
poor, and the indirect effect was not significant (indirect ef-
fect = 0.01; bootstrapped 95% confidence interval = —0.003 to
0.032) (Figure S2). Parallel mediation analysis was also con-
ducted for amygdala-vIPFC connectivity after controlling
motion-related artifacts with the Friston 24-parameter model.
This analysis again replicated the mediation effect of
amygdala-vIPFC connectivity on the association between
negative parenting and adolescent internalizing depressive
symptoms (Figure 4; Table S3; Figure S5).

Genetic Basis of Variation of Amygdala-viPFC
Connedctivity

After we regressed out the effects of sex and age on
amygdala-vIPFC connectivity, standardized residuals were
used for subsequent genetic analyses according to a tradi-
tional method named the ACE model (77). Monozygotic twins
exhibited significant within-pair correlation for amygdala
functional connectivity with the left vIPFC (r = .29, p = .043), but
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dizygotic twins showed no reliable within-pair correlation
(r=—.18, p = .440). These results indicated a genetic influence
on connectivity between the left amygdala and left vIPFC. The
univariate model-fitting analyses revealed that the AE model
best fit the data; 21% variation of this amygdala-vIPFC con-
nectivity pathway was explained by genetic factors, while
another 79% was attributed to nonshared environment effects
(Table 3). A parallel ACE model was also conducted for
amygdala-vIPFC connectivity after controlling motion-related
artifacts with the Friston 24-parameter model, which revealed
that the heritability of amygdala-vIPFC connectivity was 22%
(Table S4).

DISCUSSION

This study investigated the effects of maternal negative
parenting in early adolescence on amygdala-prefrontal cir-
cuitry and longitudinal outcomes on internalizing symptoms
later in mid-adolescence within a framework linking the syn-
ergic interaction of risk genetic and environmental factors to
amygdala dysconnectivity and adolescent depression symp-
toms. Negative parenting in early adolescence was positively
predictive of amygdala-vIPFC connectivity and subsequent
internalizing symptoms. Specifically, adolescents who were
exposed to more negative parenting showed stronger intrinsic
functional connectivity between the left amygdala and left
VvIPFC, and this amygdala-prefrontal connectivity in turn
mediated higher depressive symptoms later in mid-
adolescence. We also observed that amygdala-vIPFC con-
nectivity exhibited moderate genetic heritability (21%-22%).
Our findings suggest that maternal negative parenting and
genetic factors in early adolescence may increase the risk of
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Figure 2. A schematic illustration of the effects of maternal negative parenting on amygdala-based intrinsic functional connectivity. Representative
brain regions showing significantly positive (red) or negative (blue) correlations between maternal negative parenting and intrinsic functional connectivity with
the left and right amygdala seeds separately. Target regions include the left ventrolateral prefrontal cortex (vIPFC), left middle temporal gyrus (MTG), right
superior temporal gyrus (STG), right middle occipital gyrus (MOG), and bilateral precentral gyrus (PreCG). Scatter plots depict correlations between maternal
negative parenting (x-axis) and connectivity strength of the left and right amygdala seeds with corresponding target regions (y-axis). Note that this figure
displays only brain regions reproducible from additional control analyses using the Friston 24-parameter model. a.u., arbitrary units; L, left; R, right.

development of depressive symptoms through their synergic
effects on amygdala-vIPFC circuitry.

The increased amygdala-vIPFC connectivity in adolescents
exposed to maternal negative parenting appears consistent
with previous findings on hyperconnectivity of the amygdala
with prefrontal regions among individuals with depressive and/
or anxious symptoms (28,78-81). One recent study, for
instance, found that adults exposed to harsh parenting in
childhood displayed a positive correlation between amygdala

and vIPFC activation during an emotion-labeling task, reflect-
ing a deficiency in recruiting vIPFC for regulating amygdala
reactivity in responses to emotional stimuli (30). By extending
this finding among adults, our study further demonstrates that
exposure to negative parenting in early adolescence is asso-
ciated with stronger amygdala-vIPFC intrinsic functional con-
nectivity in the absence of external task demands in mid-
adolescence. In contrast to two studies reporting atypical
amygdala-mPFC development in children and adolescents
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Amygdala-vIPFC Adolescent
connectivity Anxiety
0,26 0.12
0.80***
Maternal | _ _ _ _______ N Adolescent
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Figure 3. Mediation model depicts the relationships among negative
parenting in early adolescence, mid-adolescent depressive symptoms, and
amygdala—ventrolateral prefrontal cortex (VIPFC) connectivity. Structural
equation modeling demonstrates good fit, with x2; = 0.01, p = .92, root mean
square error of approximation = 0 (95% confidence interval = 0-0.07), stan-
dardized root mean square residual = 0.01, comparative fit index = 1.00. In-
direct effect was significant (indirect effect = 0.03; bootstrapped 95%
confidence interval = 0.009-0.054). For clarity of presentation, the diagrams
do not show nonsignificant control variables (i.e., sex, wave 2 age, and
stressful life events). Paths are marked with standardized coefficients. *p <
.01.**p < .001.

with maternal deprivation and insensitive parenting (28,80), our
finding indicates the longitudinal effect of negative parenting
on increased amygdala-vIPFC intrinsic connectivity in mid-
adolescence. From a perspective of brain maturation and
emotional development, the most rapid transformation from
relative immaturity to a more mature state occurs during
adolescence (17-19). Our finding indicates that negative
parenting in early adolescence may lead to suboptimal brain
maturation, especially for the development of amygdala-
prefrontal circuitry. Although the definitive mechanisms un-
derlying increased amygdala-vIPFC connectivity in our study
remain an open question, one possible explanation is that
chronic stress related to negative parenting may lead to stress-
induced modifications of the hypothalamic-pituitary-adrenal
axis activity with excessive cortisol release and thereby af-
fects the maturation process of emotion-related brain circuitry
(26,28,82). Future studies are needed to address the neurobi-
ological mechanisms of how adverse environmental factors
such as negative parenting in childhood shape amygdala-
prefrontal development during adolescence.

Amygdala-vIPFC Adolescent
connectivity Anxiety
- 0.10 **
0.21 0.80%*
Maternal | __________ - Adolescent
Negative Parenting 0.08 Depression

Figure 4. Mediation model depicts the relationships among negative
parenting in early adolescence, mid-adolescent depressive symptoms, and
amygdala-ventrolateral prefrontal cortex (vVIPFC) connectivity using the
Friston 24-parameter model. Structural equation modeling demonstrates
good fit, with %2, = 1.01, p = .32, root mean square error of approximation =
0.01 (95% confidence interval = 0-0.20), standardized root mean square
residual = 0.02, comparative fit index = 1.00. Indirect effect was significant
(indirect effect = 0.02; bootstrapped 95% confidence interval =
0.003-0.039). For clarity of presentation, the diagrams do not show
nonsignificant control variables (i.e., sex, wave 2 age, and stressful life
events). Paths are marked with standardized coefficients. *p < .01. **p <
.001.
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In conjunction with increased amygdala-vIPFC connectivity,
we further observed that this neural pathway mediated the
association between negative maternal parenting in early
adolescence and higher internalizing depressive symptoms
later in mid-adolescence. There is increasing evidence from
recent neuroimaging studies suggesting that early adverse
experiences can lead to an increased risk for the development
of psychopathology, most likely through acting on amygdala-
prefrontal circuitry (24,25). For instance, increased amygdala-
vmPFC connectivity mediates the association between
childhood stress hormone cortisol levels and adolescent
internalizing depressive symptoms 14 years later (34). A major
discrepancy is that we observed a mediation effect of
amygdala-vIPFC connectivity on the association between
negative parenting and adolescent depression, while they
observed a mediation effect localized to amygdala-vmPFC
connectivity pathway. Given that there are large differences
in the independent variables and age ranges for participants
between the two studies, the effects of childhood stress
cortisol and maternal negative parenting in early adolescence
on internalizing depressive symptoms may be mediated by
different amygdala-prefrontal pathways in middle to late
adolescence. Thus, our findings provide ample opportunities
for future research, particularly using longitudinal neuro-
imaging design with multiple sampling points to delineate how
longitudinal dynamics in brain maturation, especially for
different amygdala-prefrontal pathways, mediate the adverse
effects of different early adverse experiences (i.e., stress
exposure, negative parenting) on internalizing symptoms later
in adolescence. It is worth noting that maternal negative
parenting was associated with decreased amygdala connec-
tivity with distributed brain regions other than the vIPFC in our
present study. However, none of the connectivity of these re-
gions with the amygdala is related to internalizing symptoms
during adolescence at the time of scanning.

Moreover, we observed that the amygdala-vIPFC connec-
tivity pathway displayed moderate heritability. This result is in
part consistent with findings from one recent study in which
amygdala-prefrontal functional connectivity demonstrated in-
fluences of genetics and environment, with substantially larger
environmental influences than genetic contributions to this
connectivity pathway in 7- to 9-year-old twins (43). This finding
together with our observation highlights both genetic and
environmental influences on the development of amygdala-
prefrontal circuitry and further suggests that environmental
influences mostly explain the longitudinal effect of negative
parenting on internalizing depressive symptoms later in mid-
adolescence. Our previous studies, for instance, demon-
strated the interacting effect of BDNF Val66Met polymorphism
with maternal parenting and stressful life events on adolescent
depressive symptoms (48,49). Together, our present and pre-
vious findings suggest potential neurodevelopmental mecha-
nisms underlying the synergic effects of risk genes such as
BDNF Val66Met polymorphism and environmental factors on
adolescent internalizing symptoms likely by acting on the
amygdala-prefrontal circuitry.

This study is, to our knowledge, the first to suggest a
genetically based neurodevelopmental pathway by which
negative parenting increases vulnerability for internalizing
symptoms during adolescence. Our findings should be
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Table 3. Statistics and Parameter Estimates for Univariate Genetic Modeling of Amygdala-vIPFC Connectivity

Model $2 df AlC Ay? Adf o A (95% Cl) C (95% Cl) E (95% Cl)

ACE 496.36 174 148.36 0.21 (0-0.44) 0 (0-0.28) 0.79 (0.56-1.00)
AE® 496.36 175 146.36 0 1 1.00 0.21 (0-0.44) 0.79 (0.56-1.00)
CE 497.81 175 147.81 1.45 1 23 0.12 (0-0.32) 0.88 (0.69-1.00)
E 499.04 176 147.04 2.65 2 31 1.00 (1.00-1.00)

A, additive genetic factors; AIC, Akaike information criterion (low and ideally negative values indicate good fit); C, shared environmental factors;
Cl, confidence interval; E, specific environmental factors; vIPFC, ventrolateral prefrontal cortex.

“Best-fitting model.

considered in light of some limitations. First, there were no
fMRI data obtained before negative parenting in our study.
Thus, we can test only the association between negative
parenting and the resting-state fMRI data and cannot come to
a causal conclusion. Future studies are required to examine
how negative parenting in early childhood affects the devel-
opment of amygdala-prefrontal circuitry, ideally with multi-
modal brain imaging techniques at multiple time points
spanning childhood and adolescence. Second, behavioral
measurements in our present study were based solely on self-
reports; more objective physiological and endocrine measures
(e.g., autonomic arousal, blood pressure, stress hormones) as
well as family interaction experiments, such as an event-
planning interaction, are also critical in future studies (83).
Third, high-spatial-resolution brain imaging techniques are
required to better address amygdala subregion-specific
mediation effects.

In conclusion, this study demonstrates that maternal
negative parenting in early adolescence leads to internalizing
depressive symptoms later during mid-adolescence through
increased amygdala-vIPFC connectivity, which is thought to
be critical for appraisal and regulation of emotions. The mod-
erate heritability of this amygdala-prefrontal pathway suggests
that interplay of genetic and environmental factors plays a
critical role in the development of emotion-related brain cir-
cuitry and internalizing symptoms from early to middle
adolescence. Our findings have the potential to advance our
understanding of the neurodevelopmental origins of emotion-
related psychopathology following exposure to adverse envi-
ronmental factors.
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