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Abstract School-age children are in a specific develop-

ment stage corresponding to juvenility, when the white

matter of the brain experiences ongoing maturation.

Diffusion-weighted magnetic resonance imaging (DWI),

especially diffusion tensor imaging (DTI), is extensively

used to characterize the maturation by assessing white

matter properties in vivo. In the analysis of DWI data,

spatial normalization is crucial for conducting inter-subject

analyses or linking the individual space with the reference

space. Using tensor-based registration with an appropriate

diffusion tensor template presents high accuracy regarding

spatial normalization. However, there is a lack of a

standardized diffusion tensor template dedicated to

school-age children with ongoing brain development. Here,

we established the school-age children diffusion tensor

(SACT) template by optimizing tensor reorientation on

high-quality DTI data from a large sample of cognitively

normal participants aged 6–12 years. With an age-balanced

design, the SACT template represented the entire age range

well by showing high similarity to the age-specific

templates. Compared with the tensor template of adults,

the SACT template revealed significantly higher spatial

normalization accuracy and inter-subject coherence upon

evaluation of subjects in two different datasets of school-

age children. A practical application regarding the age

associations with the normalized DTI-derived data was

conducted to further compare the SACT template and the

adult template. Although similar spatial patterns were

found, the SACT template showed significant effects on the

distributions of the statistical results, which may be related

to the performance of spatial normalization. Looking

forward, the SACT template could contribute to future

studies of white matter development in both healthy and
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clinical populations. The SACT template is publicly

available now (https://figshare.com/articles/dataset/

SACT_template/14071283).

Keywords School-age children � Diffusion-weighted
MRI � Diffusion tensor template � Spatial normalization

Introduction

School-age children, typically between the ages of 6 and 12,

are in the age period referred to as middle childhood, which

represents a distinctive period of human juvenility before the

developmental transition to adolescence [1]. Different from

children in infancy and early childhood, school-age children

experience cognitive development by interacting with

systematic education in elementary schools [2]. Meanwhile,

the continued white matter maturation during this period

heralds remarkable microstructural changes underlying the

structural development [3]. Diffusion-weighted magnetic

resonance imaging (DWI) techniques enable non-invasive

approaches to quantitatively assess white matter microstruc-

ture based on water molecule diffusion signals [4]. It has

been gaining popularity to conduct group-wise analyses

based on modeled DWI data regarding developmental or

clinical topics [5–7].

As a commonly used model with DWI data, diffusion

tensor imaging (DTI) has been extensively applied to

developmental studies because it requires a relatively

shorter scan time, making it feasible for children, and has

accessible protocols for MRI scanners [3, 6, 8]. Particu-

larly, spatial normalization is an essential step for inter-

subject analyses or linking the native space with the

standard space regarding DTI data processing [9]. The

registration algorithm is the key element for spatial

normalization. There are two main kinds of registration

algorithms feasible for DTI data: the scalar-based algo-

rithm and the tensor-based algorithm. Unlike scalar-based

registration using scalar features such as fractional

anisotropy (FA) or b0 intensity, tensor-based registration

leverages full tensor information to achieve more accurate

alignments in white matter [10–13]. Moreover, tensor-

based registration is also useful for the spatial normaliza-

tion of other types of DWI data, such as high angular

resolution diffusion imaging [11] and neurite orientation

dispersion and density imaging [14], by applying the

tensor-based deformation field to the corresponding data.

To take advantage of tensor-based registration algorithms

for developmental and clinical studies in school-age

children, a diffusion tensor (DT) template, serving as the

optimization target of the registration, is required.

A few DT templates for adults have been developed to

date [15–20]. However, several concerns still exist regarding

the scenario of using a DT template in school-age children.

First, with the development of the brain, a number of

anatomical properties of white matter differ significantly

between school-age children and adults [3]. As found with

T1-weighted templates, it is not optimal to directly apply

adult templates to pediatric data [21, 22]. Therefore, it would

be worth constructing a DT template specifically based on

the data of school-age children. Second, regarding the

construction of the template, a large sample of subjects

would be expected to reduce template variability [23]. Third,

it would be informative and convenient for practical

applications to provide a DT template in standard space.

This is related to the difference between the standardized

template and a study-specific template. It has been demon-

strated that a DT template carefully established in standard

space outperforms a study-specific template in the spatial

normalization of adult data [19, 24].Meanwhile, an available

standardized template not only saves the cost of time for

constructing a study-specific template each time but also

provides a reference space to boost correspondence across

MRI modalities or studies. Finally, to sustain the anatomical

consistency of white matter, a DT template should be

constructed in terms of the optimization of tensor reorien-

tation rather than using a surrogate deformation field

[25, 26].

By considering the concerns described above, we aimed

to develop a SACT template dedicated to school-age

children by using a large sample of DTI data (380

participants). After data quality control and preprocessing,

we constructed the SACT template with tensor reorienta-

tion optimization by using Diffusion Tensor Imaging

Toolkit (DTI-TK) [27, 28] in an age-balanced way.

Moreover, the SACT template was mapped to the standard

space represented by the Chinese pediatric (CHN-PD)

atlases [29], which were previously established based on

the same dataset as the current study. We further demon-

strated the performance of the SACT template based on

two different datasets of school-age children regarding the

accuracy of spatial normalization and the statistical anal-

yses of age associations with DT-derived metrics. To the

best of our knowledge, this is the first attempt to establish a

standardized DT template dedicated to school-age children.

Combined with the CHN-PD atlases, the SACT template

contributes to studies of white matter properties in middle

childhood.

Materials and Methods

Participants

In this study, we included three datasets covering the full

age range of school-age children (6–12 years) to construct
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and evaluate the SACT template. Dataset 1 was the

exploratory data pool for constructing the template. Both

datasets 2 and 3 were the test data pools for validating the

newly-constructed template, especially the spatial normal-

ization accuracy. All three datasets focused on typically-

developing school-age children who did not meet any of

the following criteria: (1) intellectual or developmental

disabilities, (2) history of neurological disorders, (3)

psychoactive drug use, (4) having a brain injury, or (5)

ever losing consciousness due to head injury. No sedatives

were used during the MRI scans of the three datasets. A

mock session, simulating an actual MRI scan by using a

decommissioned MRI scanner and recordings of the noise

of MRI operation, was used in the recruitment of datasets 1

and 2 to acclimate each child to the MRI environment.

Specifically, after quality control (26 children were

excluded according to the criteria described below), dataset

1 consisted of data from 380 participants aged 6–12 years

(mean age ± SD, 9.09 ± 1.36 years, 201 boys/179 girls)

with neuroimaging data collected at Peking University

(PKU dataset). After quality control (14 children were

excluded), dataset 2 contained data from 115 children aged

6–12 years (9.09 ± 1.34 years, 69 boys/46 girls), whose

neuroimaging data were acquired at Beijing HuiLongGuan

Hospital (HLG dataset). Both the PKU dataset and the

HLG dataset were obtained from the Children School

Functions and Brain Development project (CBD, Beijing

Cohort) [30], which aims to establish a large longitudinal

cohort of school-age children with comprehensive assess-

ments, such as multimodal neuroimaging data, cognitive

measurements, and academic achievements. All the

recruited children were cognitively normal based on the

assessment battery of the CBD project [31]. All the

children’s legal guardians provided written informed

consent approved by the Ethics Committee of Beijing

Normal University (approval number, IRB_A_0004_

2019001). Dataset 3 had the data of 61 participants aged

6–12 years (9.29 ± 1.38 years, 31 boys/30 girls), who were

selected from the baseline data of the Enhanced Nathan

Kline Institute Rockland Sample (NKI dataset) [32]. Only

subjects with MRI data passing quality control were

selected. Written informed consent was given by the

participants and their legal guardians following procedures

approved by the Nathan Kline Institute Review Board. The

demographic information of each dataset is listed in

Table 1.

MRI Data Acquisition

For the PKU and HLG datasets, the same type of scanner

(3T Siemens MRI Scanner Magnetom Prisma; Erlangen,

Germany), was used at both sites with the same scanning

parameters for T1-weighted (T1w) and diffusion-weighted

images (DWI). Specifically, the T1w data were acquired

using an MPRAGE sequence with the following parame-

ters: repetition time (TR) = 2,530 ms, echo time (TE) =

2.98 ms, flip angle = 7�, field of view (FOV) = 256 mm 9

224 mm, in-plane resolution = 1 mm 9 1 mm, sagittal

slices = 192, and slice thickness = 1 mm. The DWI data

were acquired using a single-shot 2-dimensional echo-

planar imaging (EPI) sequence with the following param-

eters: TR = 7,500 ms, TE = 64 ms, flip angle = 90�, FOV =

224 mm 9 224 mm, in-plane resolution = 2 mm 9 2 mm,

axial slices = 70, slice thickness = 2 mm, phase-encoding

direction = posterior [ anterior, 64 diffusion volumes

weighted with a b-value of 1,000 s/mm2 and 10 b = 0

s/mm2 volumes. Prior to DWI scanning, a corresponding

field map with the same spatial resolution was acquired for

correction of susceptibility-induced distortion by using a

double-echo gradient-echo (GRE) field map sequence: TR

= 400 ms, TE1/TE2 = 4.92 ms/7.38 ms and flip angle =

60�. For the NKI datasets, we only used the DWI data,

which were collected on a 3T Siemens MRI Scanner

Magnetom Trio (Erlangen, Germany). A multi-band EPI

sequence [33] was used with the following parameters: TR

= 2,400 ms, TE = 85 ms, flip angle = 90�, FOV = 212 mm

9 180 mm, in-plane resolution = 2 mm 9 2 mm, axial

slices = 64, slice thickness = 2 mm, phase-encoding

direction = anterior [ posterior, 128 b = 1,500 s/mm2

volumes corresponding to diffusion gradient directions, 9

b = 0 s/mm2 volumes and a multi-band acceleration factor

of 4.

Quality Control of MRI Data

All the included T1w and DWI data were evaluated for

quality. For the T1w data, four well-trained raters (H.G.,

Y.W., J.L., and Z.P.) independently performed visual

examinations of individual images to determine serious

data problems, including obvious brain lesions, lack of

slices, and excessive noise. As the visual check was only

conducted to detect obvious problems, the data identified as

problematic by any one of the raters were excluded. We

then applied the Computational Anatomy Toolbox

(CAT12, http://dbm.neuro.uni-jena.de/cat) to derive the

weighted overall image quality considering the inhomo-

geneities and noise of the T1w data. T1w data with per-

centage rating points\75% were excluded. For the DWI

data, we applied DTIPrep v1.2.8 [34] for quality control

and visual checks. First, the raw Dicom data were con-

verted to Nearly Raw Raster Data file format using the

DWIConvert tool of DTIprep. Second, the converted DWI

data were loaded to visually check the uniformity of the

diffusion gradient direction on a unit sphere as well as to

check for issues including missing slices and heavy dis-

tortions. Third, we selected the default protocol of DTIprep
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to run an automatic quality check, except for setting the

tolerance of the percentage of problematic gradients as 0.1.

Fourth, a visual check was conducted to confirm the

automatic exclusion of problematic directions for each set

of DWI data passing the DTIPrep check. The excluded

volumes of each set of DWI data were also recorded. In

addition, for the PKU and HLG datasets, we considered the

participants that had both T1w and DWI data in the fol-

lowing analyses. For the NKI dataset, we only considered

the quality of the DWI data.

Data Preprocessing

We mainly used FSL version 6.0 [35] to preprocess the

DWI data. First, head motion across DWI volumes and the

effects of eddy current were corrected using eddy_cuda

[36]. In particular, outlier replacement [37] and correction

of slice-to-volume movement [38] were considered to

compensate for the noise. Second, we corrected distortions

in the eddy-corrected DWI data with GRE field maps and

corresponding T1w data. Specifically, optiBET [39] was

applied for brain extraction based on T1w data. After

segmenting the extracted brain data with FAST [40], we

leveraged the tool epi_reg of FSL to correct the geometric

distortions of the DWI data with the information of the

corresponding field map. The corrected data were mapped

back to the native space by applying an inversed rigid

spatial transformation between the native space and the of

T1w data space. As no field maps were available for the

NKI dataset, distortion correction was only performed in

the PKU and HLG datasets. Finally, after removing the

problematic directions recorded from the quality check for

each distortion-corrected set of DWI data, the DTIFIT tool

of FSL was used to calculate voxel-wise DT. All the DT

data were finally converted into the format (e.g., diffusivity

units) required by DTI-TK.

Constructing the SACT Template

Given the large sample size of the PKU dataset, we used it

to establish the SACT template. In the PKU dataset, there

were six age groups at one-year intervals, such as the 6–7-

year-old group and the 7–8-year-old group. The demo-

graphic information of each age group is listed in Tables 1

and S1. Considering the variation in the number of

participants across age groups, we randomly sampled the

data pool to provide age-balanced datasets, avoiding bias

related to specific age groups with more participants. Under

the sampling scheme without replacement, we randomly

sampled 20 participants of each age group 100 times. After

grouping the re-sampled data each time, we subsequently

had 100 datasets with 120 participants per dataset.

For each re-sampled dataset, we established the DT

template in three sequential steps. Briefly, we first estab-

lished a population-specific DT template using the DTI-TK

software package [25, 27, 28], which uses the full tensor

information for registration across subjects. The displace-

ment field from each subject’s native space to the

population space (Tnat!pop) was derived accordingly.

Second, after applying the alignment from the T1w data

to the DWI data derived from the distortion correction, the

T1w data (skull-stripped) were realigned with the DT data

in native space. The T1w data were further transformed

into population space by using the corresponding Tnat!pop.

The T1w data were averaged to represent the population

space, which were subsequently warped to standard space.

Third, we used the CHN-PD atlas [29] as the standard

space reference that was situated in Montreal Neurological

Institute (MNI) space with high-quality T1w templates

established from the same CBD dataset. The Tpop!CHN�PD

mapping from the population space to the standard space

was derived by using Advanced Normalization Tools

(ANTs, version 2.2.0). We combined Tnat!pop and

Tpop!CHN�PD to derive the displacement field from native

Table 1 Demographic infor-

mation of the three datasets.
Age range (years) Number Sex (female/male)

Dataset 1 (PKU) Age groups Group 1 6–7 25 15/10

Group 2 7–8 56 28/28

Group 3 8–9 103 43/60

Group 4 9–10 98 48/50

Group 5 10–11 58 26/32

Group 6 11–12 40 19/21

Dataset 1 Overall 6–12 (9.09 ± 1.36) 380 179/201

Dataset 2 (HLG) 6–12 (9.09 ± 1.34) 115 46/69

Dataset 3 (NKI) 6–12 (9.29 ± 1.38) 61 30/31

The mean and the SD of the age for the whole dataset are included in parentheses (mean ± SD).
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space to standard space (Tnat!CHN�PD) for each subject.

Using the combined displacement field, we directly re-

oriented the subject’s DT to CHN-PD space with a single

interpolation, avoiding the smoothing effect of multiple

interpolations. The subjects’ DTs in the space of the CHN-

PD atlas were averaged to derive a DT template in the

standard space. A schematic demonstration of the above

procedures is shown in Fig. 1 (a complete description of the

methodological details is available in the supplementary

materials).

In addition to the re-sampled full-age (6–12 years old)

dataset, the above procedures were applied to each age

group to derive the corresponding age-specific DT template

using the full sample of the group. Notably, the age-

specific T1w template of the CHN-PD atlas was selected as

the standard space reference according to the age group.

Assessment of the Similarity Across DT Templates

To determine how to represent the derived DT templates

from the resampled datasets, we assessed the similarity

across these DT templates based on tensor and tensor-

derived scalar quantities. To measure the tensor-based

similarity, we applied Euclidean distance squared (EDS) to

measure the dissimilarity between two diffusion tensors.

This was defined as EDS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trace D1 � D2ð Þ2
� �

r

, where

D1 and D2 are diffusion tensors. EDS was then calculated

for the corresponding voxels (i.e., the same coordinates)

over each pair of DT templates. For the tensor-derived

scalar quantities, we selected two commonly-used quanti-

ties, fractional anisotropy (FA) and mean diffusivity (MD),

to calculate the voxel-wise absolute difference and the

spatial correlation between each pair of FA (or MD) maps

derived from the DT templates. If strong similarities across

the DT templates were found, the SACT template then

were represented by averaging the DT templates of the re-

sampled datasets.

Evaluation of the SACT Template for DTI Spatial

Normalization

To demonstrate the effect of different DT templates on the

DTI spatial normalization of school-age children, we

compared the normalization performance between the

SACT template and the DT template of the IIT Human

Brain Atlas v.5.0, which has been shown to exhibit top

performance in DTI spatial normalization [19]. Applying

the high-dimensional diffeomorphic registration of DTI-

TK to both the HLG and NKI datasets in terms of the two

DT templates, several metrics were used to quantitatively

assess their performance from three aspects. First, we

evaluated the tensor-based voxel-wise similarity between

each set of normalized DT data and the template by using

the metrics of EDS and deviatoric distance squared (DDS).

In particular, DDS is the default similarity metric used by

DTI-TK when conducting diffeomorphic registration [27].

DDS is similar to the definition of EDS, except for

replacing the tensor as the deviatoric tensor that is defined

as Ddev ¼ D� trace Dð Þ=3½ ��I (I being the identity tensor).

Second, we assessed the voxel-wise volumetric deforma-

tion from the template to individual DT data when

conducting registration. The deformation was represented

by the Jacobian determinant (JD) of the deformation matrix

in terms of local deformations (no affine transformations)

and global deformations (including affine transformations).

Third, we evaluated the inter-subject alignment by calcu-

lating the normalized FA SD (rFA) [25] and the dyadic

coherence (dCOH) [41] based on the normalized DT data

of the entire group. Both higher values of dCOH and lower

values of rFA indicate better inter-subject alignment. In

addition to the voxel-wise metric maps, we also used the

ICBM-DTI-81 white matter labels atlas [16] for compar-

isons at the regional level. To align the labels atlas with the

SACT and the IIT template, we used the fsl_reg of FSL

with the configuration optimized for FA data to register the

corresponding FA map of the labels atlas to the FA maps

derived from the SACT template and the IIT template. We

further applied an FA-based mask (FA [0.25) to the

aligned labels atlas; this was based on the FA maps of the

two DT templates. Then, the mean value within each

Fig. 1 Schematic of establishment of the diffusion tensor (DT)

template in the standard space corresponding to the CHN-PD atlas.

All arrows indicate the application of a registration or deformation

field. Numbers with circles (1–5) indicate sequential steps. n =

number of participants. Step 1 (blue) constructs the population DT

template for deducing the deformation Tnat!pop. Step 2 (green) warps

the corresponding skull-stripped T1w data to the space of the

population DT template. Then, the warped T1w data are averaged.

Step 3 (red) spatially normalizes the averaged T1w data to the

corresponding T1w template of the CHN-PD atlas. The deformation

Tpop!CHN�PD is deduced accordingly. Step 4 (yellow) calculates the

deformation Tnat!CHN�PD by combining Tnat!pop and Tpop!CHN�PD.

Step 5 (purple) applies the Tnat!CHN�PD to the corresponding DT data.

DTI-TK, Diffusion Tensor Imaging Toolkit; nat, native space; pop,

population space; CHN-PD, Chinese pediatric atlases; ANTs, the

Advanced Normalization Tools.
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region was used for comparisons. In addition, to guarantee

a fair comparison, we kept all the parameters of the

registration the same (for affine registration: optimization-

stop threshold = 0.01, (x, y, z)sep = 4 mm, similarity metric

= EDS; for diffeomorphic registration: optimization-stop

threshold = 0.002, number of iterations = 6), except the

target template was changed accordingly.

Evaluation of the Age Associations of DTI Metrics

Based on the SACT Template

To evaluate a practical application of the SACT template,

we took the associations between chronological ages and

DTI metrics (FA and MD) as examples regarding the use of

different DT templates, i.e., the SACT template and the IIT

template. Specifically, we applied voxel-based analysis

(VBA) [42] and tract-based spatial statistics (TBSS)

analysis [43] to the DT data spatially normalized by using

DTI-TK. To increase statistical power, we considered the

HLG and NKI data as one group. With a general linear

model (GLM) to test the associations, we added gender and

site information (both dummy coded) of participants as

covariates. For the VBA, we further included the defor-

mation measured by the corresponding JD as another

metric to evaluate the age association. For the TBSS

analysis, we skeletonized the mean FA maps with a

threshold of 0.2 and further applied randomization [44]

with the TFCE statistic [45] to determine the significance

with 5,000 permutations. In addition, for the TBSS

analysis, we aligned the lower cingulum mask of the

FMRIB58_FA template with the DT templates by non-

linear registration of the corresponding FA maps using

fsl_reg, and these were used to properly project the data

onto the extracted skeleton of the lower cingulum [43].

Statistical Approaches for the Comparisons

For both the voxel-wise metrics (measuring the similarity,

deformation, and coherence between individual data and

template, such as DDS, JD, and dCOH) and the voxel-wise

statistical output from the VBA and the TBSS assessment,

we compared the spatial distributions of the voxel-wise

values based on the two templates using a two-sample

Kolmogorov–Smirnov (KS) test to determine whether they

followed the same continuous distribution. Given the

spatial difference between the two templates, a direct

voxel-wise comparison was not feasible, so we considered

the white matter regions (ICBM-DTI-81 white matter

labels atlas) instead. Specifically, regarding the metrics of

each white matter region (such as the EDS, DDS, JD, and

dCOH), we averaged the region-level values to deduce a

whole-brain mean value for each subject. Based on the type

of template used for the registration, we defined two groups

regarding the same subjects. The paired Wilcoxon signed-

rank test was used to determine the difference between the

two groups in terms of the deduced mean value of each

metric.

Results

Assessment of Similarity Across the DT Templates

of the Re-sampled Datasets

The first set of analyses examined the similarity across the

DT templates, aiming to evaluate the sensitivity of the

SACT template to the underlying samples. We found high

similarity across the DT templates derived from different

re-sampled datasets (Fig. 2A). Specifically, the voxel-wise

mean EDS between each pair of DT templates ranged from

1.1 9 10-6 to 2.1 9 10-6 mm2/s which was averaged

within the entire brain. The spatial correlations across the

DT templates in terms of FA and MD were also high (the

minimal Pearson correlation coefficient for FA was 0.9969

and for MD was 0.9967; Fig. 2A). Similarly, the mean of

voxel-wise absolute differences in terms of FA and MD

were trivial between pairs of DT templates (for FA: from

6.1 9 10-3 to 7.7 9 10-3; for MD: from 2.7 9 10-6 to 4.1

9 10-6 mm2/s; Fig. S2). We also showed that the number

of overlapping subjects between any two re-sampled

datasets (Fig. 2A) ranged from 33 to 62 with a mean value

of 48. The gender ratio (boys/girls) of each resampled

dataset ranged from 0.76 to 1.50, with a mean value of 1.03

(Fig. S2). Based on the high consistency found across the

re-sampled datasets, we derived the SACT template as the

averaged DT template, which was well-aligned with the

corresponding CHN-PD T1w template in the MNI space

(Fig. 2B). No visible artifacts, such as eddy-current

artifacts, were found. Fine white matter details were

observed throughout the brain in the SACT template

(Fig. 2B). The age-specific SACT templates are shown in

Fig. S3, aligning well with the corresponding age-specific

T1w templates of the CHN-PD atlases.

Using the SACT Template for Spatial Normalization

Turning now to the experimental evidence on the perfor-

mance gain of using the SACT template for spatial

normalization in school-age children, we organized the

experimental results into three parts regarding the evalu-

ation metrics. Meanwhile, we separately assessed the

spatial normalization for the HLG and NKI data.

First, we found that the mean value of regional DDS

between the normalized DT data and the template was

significantly lower for the SACT template than for the IIT

template in both the HLG and the NKI data (Fig. 3A, B).
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Large effect sizes of the paired Wilcoxon rank tests

(0.6137 for the HLG data, 0.6149 for the NKI data) were

also found, which were measured by r [46]. A value of

r [0.5 represents a large effect size [46]. A lower DDS

indicates greater closeness between the normalized data

and the template. For the voxel-wise DDS, we checked the

cumulative distributions of the intra-group (HLG and NKI)

averaged DDS maps of white matter (FA[0.25 based on

the FA map of the corresponding template). For both the

HLG and NKI data, the cumulative distributions signifi-

cantly differed between the use of the SACT template and

the IIT template (for the HLG data: P\0.001, the effect

Fig. 2 Evaluation of the SACT template. A Evaluation of the

similarity across DT templates derived from re-sampled datasets. The

violin plot shows the distribution of the data (white circle, median

value; grey vertical bar, range from the first to the third quartile). For

EDS, each data point is the averaged difference of voxel-wise

difference between two DT templates. For FA-corr, each data point is

the Pearson correlation coefficient (R) between two FA maps derived

from the corresponding DT templates. For MD-corr, each data point

is the Pearson correlation coefficient (R) between two MD maps. For

overlap, each data point is the number of overlapped subjects between

two resampled datasets. B Demonstration of the SACT template. The

color orientation and anisotropy scaling (COAS) map is overlapped

on the T1w template of the CHN-PD atlas. The numbers below are the

MNI axial coordinates (Z) corresponding to the CHN-PD atlas. The

diffusivity unit of MD is 10-3 mm2/s. The radiological convention is

applied here.
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size referred to as the non-negative KS statistic value =

0.2777; for the NKI data: P\0.001, KS statistic value =

0.2969). The mean DDS map of the SACT template

showed a higher percentage of small DDS values than the

IIT template (Fig. 3C, D). In particular, the splenium of

corpus callosum showed high DDS values when applying

the IIT template. In addition to the DDS metric, the results

were corroborated by using the EDS (Fig. S4).

Second, regarding the deformation caused by registra-

tion, the mean value of regional deformations (voxel-wise

mean of JDs within the white matter region) was signif-

icantly higher in the use of the SACT template for both the

HLG and NKI data (Fig. 4A, B). Large effect sizes of the

paired Wilcoxon rank tests were found (r-values: 0.6137

for the HLG data and 0.6149 for the NKI data). The mean

JDs based on the SACT template were closer to 1

compared with the use of the IIT template, indicating less

compression of the template when deformed into individ-

ual DT data. For the voxel-wise deformation, we checked

the absolute value of the difference between the voxel-wise

JD and 1 (simply referred to as the JD difference). For both

the HLG and the NKI data, the cumulative distributions of

the mean JD difference maps were significantly different

between the SACT template and the IIT template (for the

HLG data: P\0.001, KS statistic value = 0.4900; for the

NKI data: P \0.001, KS statistic value = 0.3329). The

mean JD difference map of the SACT template showed a

higher percentage of small JD difference compared with

the IIT template (Fig. 4C, D). The above results were based

on the global deformations, which were highly similar to

the results based on the local deformations (Fig. S5).

Third, the quality of voxel-wise inter-subject normal-

ization was assessed using both the dCOH and the rFA. For
the dCOH measuring the coherence in the dominant

direction of diffusion across participants, we found that

the cumulative distributions of the dCOH map showed a

higher percentage of high dCOH values when the SACT

template was used for both the HLG and NKI datasets

(Fig. 5A, B; for the HLG data: P\0.001, KS statistic value

= 0.0493; for the NKI data: P\0.001, KS statistic value =

Fig. 3 Comparison of the DDS metrics between the spatial normal-

ization using the SACT template (green) and the IIT template (blue).

A Each data point in the violin map is the averaged region-wise DDS

value for a subject corresponding to the use of different templates

(white circle, median value; grey vertical bar, range from the first to

the third quartile). *P \ 0.001, paired Wilcoxon signed-rank. The

result here is for the HLG dataset. B Results for the NKI dataset.

C Empirical cumulative distributions of the voxel-wise DDS values

with different templates. The distribution is based on the DDS map

averaged across the HLG datasets. Two slices are shown as examples

of the distribution of voxel-wise DDS. The radiological convention is

applied here. *P \ 0.001, two-sample Kolmogorov–Smirnov test.

CDF, the cumulative distribution function. D Results for the NKI

dataset.
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0.0473). Similarly, for the rFA capturing the variability in

diffusion anisotropy, a lower percentage of rFA was found

with the SACT template for both datasets (Fig. 5C, D; for

the HLG data: P\0.001, KS statistic value = 0.0498; for

the NKI data: P \0.001, KS statistic value = 0.0443).

Taken together, these results suggest that the quality of

spatial normalization can be increased by using the SACT

template in the two different datasets of school-age

children.

Age Associations with White Matter Properties

Based on the SACT Template

Regarding the DT-derived metrics including FA and MD,

we found a highly similar pattern of age-related associa-

tions in the VBA analyses based on the IIT template and

the SACT template (Fig. S6). The cumulative distributions

of the z-statistics measuring the voxel-wise association

between FA (or MD) and age were close to each other

regarding the two templates (Fig. S6A, B). Although the P-

values of the two-sample KS tests between the cumulative

distributions of the z-statistics were significant for both the

FA-based comparison of the two templates and the MD-

based comparison (P\0.05), the KS statistic values were

small, which were 0.0061 for the FA-based comparison and

0.0156 for the MD-based comparison. For the TBSS

analyses based on FA or MD, the cumulative distributions

of the GLM-based t-statistics on the skeleton were also

close to each other when using the two templates (Fig. S7).

The KS statistic values were small (0.0087 for the FA-

based comparison, 0.0179 for the MD-based comparison).

In particular, by performing permutation tests on the TBSS

results, significant associations (P\0.05, corrected for the

familywise error rate) between FA and age passing the

correction of multiple comparisons were only found in the

positive values based on either the IIT template or the

SACT template. Therefore, we compared the cumulative

distributions of the positive t-statistics between the FA-

Fig. 4 Comparison of the global JD between the spatial normaliza-

tion using the SACT template (green) and the IIT template (blue). A
Each data point in the violin map is the averaged region-wise JD

value for a subject corresponding to the use of different templates

(white circle, median value; grey vertical bar, range from the first to

the third quartile; red dashed line, JD value of 1 corresponding to

neither compression nor expansion). *P \0.001, paired Wilcoxon

signed-rank. Results for the HLG dataset. B Results for the NKI

dataset. C Empirical cumulative distributions of the voxel-wise

absolute difference between JD and 1 with different templates. The

distributions are based on the averaged JD� 1j j maps across the HLG

datasets. Two slices are shown as examples of the distribution of

voxel-wise JD. The radiological convention is applied. *P\ 0.001,

the two-sample Kolmogorov–Smirnov test. CDF, the cumulative

distribution function. D Results for the NKI dataset.
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based TBSS using the IIT template and that using the

SACT template but found no significant difference

between the two distributions (P = 0.2296, KS statistic

value = 0.0047, Fig. 6A). However, a significant difference

with a higher effect size (P\ 0.001, KS statistic value =

0.0929) was found between the cumulative distributions of

the corrected P-values (Fig. 6B). FA-based TBSS using the

IIT template tended to show a higher percentage of small

P-values. In addition, the significant results using either the

IIT template or the SACT template were spatially similar

(Fig. 6C). For the MD-based TBSS, significant results were

found in negative associations only. Moreover, MD-based

TBSS using the SACT template tended to show a higher

percentage of small, corrected P-values (Fig. S8A),

although the spatial distributions of the significant results

were similar (Fig. S8B).

Regarding the local deformation assessed by the JD of

the non-linear deformation field (local JD), we found

highly similar statistical maps in the VBA analyses based

on the IIT template and the SACT template, although

higher positive age associations were found on part of the

right posterior thalamic radiation when using the SACT

template (Fig. S9A, B). Notably, the cumulative distribu-

tions of the corresponding z-statistics were significantly

different regarding the two templates (P = 1.04 9 10-296,

KS statistic value = 0.0407). There was a higher percentage

of positive age associations with the local deformation

when using the SACT template, where the positive

association indicated a local expansion of white matter

with age. When using the global JD, we still found similar

results (Fig. S10).

Discussion

In this study, we established a diffusion tensor template for

school-age children, the SACT template, based on a large

sample of high-quality DWI data. Compared with the IIT

template, we found higher spatial normalization accuracy

when conducting registration with the SACT template in

two DWI datasets of school-age children. In addition, as an

example of practical application, we demonstrated that the

Fig. 5 Evaluation of the inter-subject coherence of normalized data

based on the SACT template (green) and the IIT template (blue). The

radiological convention is applied. A For the HLG dataset, the

empirical cumulative distributions of the voxel-wise dCOH values

regarding different templates. Two slices are shown as examples of

the distribution of voxel-wise dCOH. *P \ 0.001, the two-sample

Kolmogorov–Smirnov test. CDF, the cumulative distribution func-

tion. B The dCOH results for the NKI dataset. C For the HLG dataset,

the empirical cumulative distributions of the voxel-wise rFA values

regarding different templates. Two slices are shown as examples of

the distribution of voxel-wise rFA. D The rFA results for the NKI

dataset.
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use of different DT templates influenced the distributions

of statistics regarding age associations with the DT-derived

metrics. Taken together, the SACT template provides a

standard space reference for the spatial normalization of

DWI data in school-age children.

Establishment of the SACT Template

Sample size and data quality are basic but crucial factors

that affect the reliability of the established template [23].

To construct the SACT template, we used a large sample

dataset comprising[300 participants that fully cover the

school-age period. Compared with previous efforts to

establish an adult DT template [17, 19, 47], a larger sample

size would cover more population variation. Moreover,

with the same protocol, all of the data were acquired from

the same scanner operating by a fixed technical team at

Peking University, avoiding the harmonization of multi-

site DWI data [48]. Regarding the data quality control,

several independent raters carefully evaluated the data

quality to remove outliers. We further used DTIPrep to

double-check the quality of DWI data, especially for

corrupted gradients. DTIPrep has been shown to exhibit

suitable performance for this purpose [49].

Regarding the methodological consideration of the

construction of the SACT template, we considered the

distribution of the subjects over the age range. Using a

dataset with subjects not uniformly distributed over the age

range may bias the established template to some extent.

This is more apparent for a pediatric template [21, 50, 51],

given the rapid development of the underlying brain

structures. Moreover, age has been recognized as the

dominant factor explaining the variance of brain structures

when constructing a pediatric template [51]. In our

scenario, an extreme example would be if we used a

dataset comprised only of children of the same age; the

template derived from this dataset would only represent the

DT features of this specific age, which could not be directly

generalized to cover a broader age range. Therefore, we

assigned priority to balance the distribution of age by re-

Fig. 6 TBSS analysis of FA and age for the SACT template (green)

and the IIT template (blue). A Empirical cumulative distributions of

GLM-based t-values on the skeleton. Only positive t-values are

included. KS stat, two-sample Kolmogorov–Smirnov test. CDF, the

cumulative distribution function. B Empirical cumulative distribu-

tions of corrected P-values for positive associations. C Examples of

axial slices showing the spatial distribution of significant positive

association (P\ 0.05, corrected for the familywise error rate). The

significant results (red) are overlaid on the FA mask (white) derived

from the mean FA maps across subjects with a threshold of 0.2. Z,
MNI axial coordinates. The radiological convention is applied.
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sampling the datasets. This strategy contributed to not only

the balance of age but also the test of the dependence

between the SACT template and the underpinning samples.

Specifically, given the possibility that different levels of

variance might exist among age groups and samplings, if

the derived templates from different re-sampled datasets of

balanced age distribution were significantly inconsistent,

there would be strong dependence between the derived

template and the adopted samples, which might be

accounted for by the inhomogeneity of the datasets. This

would imply that it is not appropriate to derive a

representative template for a specific population. In

contrast, if we could derive highly consistent templates, it

would demonstrate the existence of a representative

template regardless of the re-sampled datasets. Based on

these considerations, we found highly consistent templates

derived from the 100 re-sampled datasets with small mean

EDS values across the voxel-wise tensors of the entire

brain and highly correlated FA/MD maps (Fig. 2A).

Notably, EDS is a metric used to directly measure the

difference between two tensors, providing a straightfor-

ward evaluation of the similarity between DT templates.

Given the high consistency across the templates derived

from the re-sampled datasets, we further averaged these

templates to derive the SACT template, reducing the

limited variations across them.

In addition, the SACT template and the other age-

specific templates were highly similar in terms of EDS and

FA values (Tables S2–4). In particular, the SACT template

showed the highest FA-based correlation and the lowest

EDS with the other age-specific templates. This suggests

that the SACT template represents the DT features of the

age range well.

Spatial Normalization Using the SACT Template

Improving the quality of spatial normalization is one of the

crucial purposes to construct a template. Regarding the

registration of DTI data, it has been demonstrated that the

use of tensor-based registration algorithms combined with

tensor templates presents higher normalization accuracy

than scalar-based algorithms [11, 19]. Therefore, we

evaluated the SACT template in terms of comparison with

another DT template by using a tensor-based registration

method from DTI-TK [25, 27]. As there are no publicly

available DT templates of school-age children (to the best

of our knowledge), we compared the SACT template with

the DT template of the IIT Human Brain Atlas (v.5.0),

which has demonstrated function in the spatial normaliza-

tion of adult data [19]. More importantly, we conducted the

evaluation based on two datasets (HLG and NKI) with

different demographic properties and parameters of DWI

data acquisition to offer more general comparisons. The

comparison covered three aspects to provide a multi-view

evaluation of the template-based effect on spatial normal-

ization. First, we found a closer tensor-based distance

(DDS and EDS) between the normalized individual DT

data and the SACT template (Figs 3 and S4), indicating

that the data are close to the template. As noted before, the

tensor-based distance provides an intuitive metric to

measure the relationship between two tensors, which is

often used for the evaluation of DTI spatial normalization

[20, 24, 52]. Second, we found less volumetric deformation

(expansion or compression) measured by JD when regis-

tering the individual DT data to the SACT template

compared with the IIT template. We compared both the

global deformation and the local deformation to confirm

that results were similar regarding the lower deformation

accompanied by the SACT template (Figs 4 and S5). Given

the continued development of brain volume during middle

childhood [53], we used global volumetric deformation to

consider the effect of the different brain sizes between the

individual data and the template. When including the affine

transformation for calculation of the JD, the effect size of

the comparison of the global deformation was larger than

the local deformation, indicating the effect of brain size.

Third, we found higher inter-subject consistency across the

normalized DT data when using the SACT template

(Fig. 5). High inter-subject consistency is beneficial to

group-wise analyses [25, 54, 55]. Notably, the above

findings were consistent between the two test datasets (the

HLG one and the NKI one). Especially, participants of the

NKI dataset are primarily Caucasian and African-Ameri-

can [32, 56], indicating the general feasibility of the SACT

template in non-Chinese pediatric samples. A potential

explanation for the performance of the SACT template

might be its closeness to the brains of school-age children

regarding brain size and white matter microstructures.

Effects of the SACT Template on the Detection

of Age Associations

We assessed the association between the properties of

white matter and chronological age, which was a straight-

forward but practical example to evaluate the statistical

results based on the SACT template and the IIT template.

Rather than interpreting the age associations, we were more

interested in the comparison of the statistical results in

terms of the two templates.

In the comparison of the statistical results of VBA based

on the two templates, the statistical results of the voxel-

wise associations between FA (or MD) and age were highly

similar in their cumulative distributions of z-statistics and

the corresponding spatial maps (Fig. S6). Although the

cumulative distributions here were significantly different,

the highly-overlapped patterns of the distributions and
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limited effect sizes of the difference still indicate a

negligible effect of the templates on these statistical

results. Our findings are consistent with a previous study

that found highly similar results of age associations with

FA using different DT templates in adults [57]. We further

explained the high similarity by showing the highly-

correlated FA (MD) values across participants when using

the two templates (Fig. S11). The high accuracy of spatial

normalization using DTI-TK might also contribute to the

high similarity. Interestingly, we found an effect of the

templates on the statistical results of the VBA-based

associations between the deformations and ages, using

either the global JD or the local JD to measure the

deformations. The cumulative distributions of z-statistics

were separate from each other, showing a relatively large

effect size (Figs S9, S10). The difference might be

accounted for by the variation of the correlation between

JDs derived from the two templates. Compared with FA,

the correlation coefficient of the JD between the two

templates had a wider range from 0.81 to 0.99 (Fig. S12),

although it still indicated high similarity. As the JD was

directly derived from the deformation field of registration,

it might be more sensitive to the difference between the

templates that served as the references for the optimization

of the registration algorithm.

In addition to VBA, the quality of spatial normalization

contributes to the reliability of TBSS analysis [47].

Consistent with the results of VBA, the GLM-based t-

statistics showed negligible differences regarding the age

associations with the skeletonized FA or MD when

comparing the TBSS results based on the two templates

(Fig. S7). However, the statistical results of the TFCE-

based permutation tests presented a significant difference

in the cumulative distributions of the voxel-wise corrected

P-values, especially in the analyses using FA (Fig. 6B).

That is, although there was no significant difference

between the cumulative distributions of the t-statistics

(Fig. 6A), a higher percentage of voxels survived multiple

comparison corrections based on spatial normalization

using the IIT template. As the TFCE score of each voxel

depends on the supporting sections underneath it [45, 58],

the difference might be caused by the different spatial

layout of the skeleton from the mean FA maps (in our case:

1.2 9 105 voxels for the IIT-based skeleton and 1.0 9 105

voxels for the SACT-based skeleton). Therefore, for TBSS

on the DTI data of the school-age children, the difference

between the SACT template and the IIT template may

affect the distribution of the permutation-based P-values

more than the GLM-based statistics, although the statistical

maps are still spatially similar. In addition, our TBSS

findings with both FA and MD are spatially consistent with

previous studies [59, 60].

Limitations and Open Problems

It is worth discussing several concerns that may be

addressed in the future. First, as the adaptive kernel

regression approach was used for the construction of the

T1w template [50], a similar idea could also be developed

regarding the DTI data to establish the DT templates with a

continuous age range and a balanced sample size. Second,

the SACT template is based on a Chinese pediatric dataset,

although we demonstrated that non-Chinese pediatric

samples (the NKI dataset) also had higher accuracy of

spatial normalization using the SACT template. It may be

worth constructing another SACT template to explore the

population-level difference based on non-Chinese samples.

Third, although we found high and close similarities among

age-specific DT templates derived from age groups with

different sample sizes, we should be cautious with

unbalanced sample sizes of age groups. Further efforts

will be required to validate the age-specific templates when

more data become available. Fourth, the evaluation of the

inter-subject spatial normalization accuracy was based on

data from healthy subjects. It would be interesting to

examine the performance of the SACT template on data

from subjects with atypical development.
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