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Authors’ response

We thank the reviewers for their enthusiasm and positive evaluation of our manuscript. We also appreciate their
thoughtful and constructive comments and have revised the manuscript to address every point made. We feel
that the revisions have strengthened our manuscript and hope that the reviewers feel that it is now ready for pub-

lication.

Reviewer # 1

1. The authors cited one paper (Mounce, Keogh, and Eccleston 2010) as a justification for extracting a general
negative emotion score. While this paper indeed used a similar approach and obtained a general distress com-
ponent, | would like to see more supporting literature, especially theoretical ones clarifying the meaning of the

core negative emotion score. Also, these citations should be added to the main manuscript.
Response:

Previous studies have suggested the multidimensional structure of negative emotion (Stokes and Levin 1990;
Watson and Clark 1984) and provide evidence that it is highly related to the symptoms and diagnosis of both
anxiety and depression (Brown et al. 1997; Clark and Watson 1991; Watson and Clark 1984). Lovibond et al.
(1995) developed the depression anxiety stress scales to measure the general negative affective syndromes
(Lovibond and Lovibond 1995) . Brown et al. (1997) have suggested that the subscales of the DASS may meas-
ure the three dimensions specified in the tripartite model of negative affect: low positive affect (Depression),
physiological hyperarousal (Anxiety), and negative affect (Stress) (Brown et al. 1997). Based on these evidences,
it's reasonable to use PCA to extract core negative emotion scores based on the raw measures of depression,

anxiety and stress.

We also added these citations in the main manuscript. Please see section 2.4, line 16-21.

2. 1 do not find the authors' response to this question: "Second, since the PCA was performed on the whole sam-

ple, there was also a data leakage problem similar to the sCCA".
Response:

We apologize for not describe our revision clearly. PCA and SCCA only performed on the training dataset, and

the testing dataset were obtained based on the component coefficients extract form PCA and SCCA process.

The detail of the prediction pipeline was as follows: the whole dataset was divided into 10 subsets. Then 9 of the
subsets were used as training sample, and the remaining one was used as the testing sample. 2, PCA was per-
formed on the training data to obtain individual’s negative emotion score, the negative emotion of testing data
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were obtained based on the raw measures and the component coefficients of PCA. Then PCA was used to re-
duce the dimension of the raw FC matrix in the training dataset, keeping only the top 300 PCs as the neural
profile matrix. The neural profile matrix of the testing dataset were obtained based on the raw FC matrix and
the component coefficients of PCA. 3, SCCA were applied to extract psychological meaningful neural patterns

based on the training data, the neural patterns of the testing data were obtained based on the neural profile ma-

trix and the unmixing matrices of SCCA. 4, The predictive model was trained using Lasso regression algorithm.

We also revised these details in the manuscript, please see section 2.4 line 16-23, section 2.5, line 16-28.

Section 2.6.1, paragraph 2, line 10-14.

3. About the correlations between the predicted and actual scores in Table 2 of the response letter, did the au-
thors train a new model for each of the indicators (e.g., depression, anxiety)? If so, | would like to see the proce-

dure to be reported in more detail and added to the main manuscript or as supplementary information.

Response:

We apologize for not describe our revision clearly. As the reviewer suggested, we trained a new model for
each of the indicators, including depression, anxiety and stress, using the same prediction pipeline in the manu-

script. We also present the results in the supplementary information eMethods 4, eResults 2 and eTable 6.

eTable 6 Correlations between predicted scores and actual scores in the BBP sample

r p MAE MAPE
Depression  0.18 1.89 x 10° 8.94 0.18
Anxiety 0.26 4.66 x 1010 8.31 0.20
Stress 0.31 6.12 x 104 6.25 0.23

Reference:

Brown, Timothy A., Bruce F. Chorpita, William Korotitsch, and David H. Barlow. 1997. “Psychometric Properties
of the Depression Anxiety Stress Scales (DASS) in Clinical Samples.” Behaviour Research and Therapy
35(1):79-89.
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A neural predictive model of negative
emotions for COVID-19

Yu Mao, Dongtao Wei, Wenjing Yang, Qunlin Chen, Jiangzhou Sun, Yaxu Yu, Yu Li,
Kaixiang Zhuang, Xiaogin Wang, Li He, Tingyong Feng, Xu Lei, Qinghua He, Hong
Chen, Shaozheng Qin, Yunzhe Liu and Jiang Qiu

Abstract—The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways
and put heavy burden on our mental health. To safeguard the mental health of the public, a predictive model of negative
emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive
model achieving both good interpretability and predictivity, we have collected a large-scale (n=542) longitudinal dataset,
alongside two independent samples for external validation. The whole-brain resting-state neural activity and social-
psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and
re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We built a predictive model based on
psychological meaningful resting state neural activities. We first applied canonical correlation analysis on both the neural
profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for
later model construction. The two most important neural patterns are associated with self-control and social interaction. We then
trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction
performance with-in sample (r = 0.44, p = 8.13%). This study established an effective neural prediction model of negative
emotions, achieving good interpretability and predictivity. It may be useful for identifying potential risky population of emotional

disorders during COVID-19.

Index Terms—opredictive model, negative emotions, COVID-19

1 INTRODUCTION

N this global pandemic of Coronavirus disease 2019

(COVID-19), our life experienced radical changes.
Around the world, most of us, have been put in lockdown
at least once, and even till today, social distancing is a re-
quirement in most of the countries. This major life stress
events is likely to have enduring influence on our emo-
tional wellbeing and mental health.[1] Surging increase of
depression and anxiety disorders[2], [3] is recognized as
one of possible consequences. It is therefore crucial to es-
tablish neural predictive models of psychological vulnera-
bility to such stressful life events, which will help us to
identify potential risky population before they develop
emotional disorders. One prominent feature of neural pre-
dictive model is its objectivity compared with self- report
approaches. Moreover, neural predictive models are useful
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for understanding the neurophysiological bases underly-
ing individual differences in vulnerability of emotional
disorders under stress. So far, the most common approach
for finding such neural markers is by correlating psycho-
physiological symptoms with neuroimaging data.[4] How-
ever, the low interpretability of the neural markers and the
high homogeneity of the data used both in feature selection
and prediction against the exploration of the potential so-
cial-psychological and neurobiological risk for emotional
disorders.[5], [6] Furthermore, lack of independent dataset
to facilitate the external validation hinder the generaliza-
tion of the predictive model in some degree.[7]

People differ in both social-environmental and individ-
ual-trait like factors, [8], [9] both of which are shown to
have a neural basis in their intrinsic functional connectivity
during rest [10], [11] and proved to be robust protec-
tive/risk factors for emotion disorders. [12]-[14] Thus in
this study, we opt to build an emotion predictive model by
combining both their neural and social-psychological pro-
files (in a large sample size, n = 542, longitudinal design,
see details in Methods), the approaches which were ex-
pected to generate interpretable neural markers and robust
prediction performance. To be predictive, those profiles
were taken before COVID-19 (Time 1: September to De-
cember 2019), their psychopathological states (focusing on
negative emotions) were tracked twice during the COVID-
19 (Time 2: February 22, Time 3: April 24, 2020). We have
also collected another independent dataset (n = 90) to test
the out-of-sample generalizability of the model.

We have constructed a predictive model for negative
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Fig. 1. Descriptive information of COVID-19 and corresponding emotional changes. (A) The figure presented the number of cumulative con-
firmed cases (grey line), cumulative cured cases (pink line), existing confirmed cases (blue line) and cumulative death toll (green line) in China
from Jan 19 to Jun 27, 2020. After the rapid growth from Jan 19 to Feb 19, the existing confirmed cases began to fall, and less than 3000 in
early April. The orange line indicated second time point (Feb 22, 2020) of the psychopathological assessment, around the turning point of the
pandemic. The purple line indicated the third time point (Apr 24, 2020) of the psychopathological assessment, the time when existing cases in
China is close to 0. (B) Anxiety (only collected data in Time 2 & 3), stress and depression surge as COVID-19 evolves over time. For each
domain, individual’s scores divided by the maximum value of the observed scores and the mean values were obtained within each time point.
Significant increase can be visually observed across time on anxiety, stress and depression. In addition, LME also indicated a significant effect
of time on individual’'s emotion state (eTable 2, Supplement). (C) The different FC patterns of subject with high (highest 10%) vs. low (lowest
10%) negative emotions in Time 1 can be visually observed in the connectivity matrix, especially the FC between SubC, DAN, DMN and FPN.
Furthermore, the brain map demonstrated difference of the degree centrality between 2 groups. Note that absolute value of the difference of
the degree centrality between 2 groups were used to generate the figure. DAN, dorsal attention network; DMN, default mode network; FPN,

Funtional connectivity Funtional connectivity

frontoparietal network; SubC, subcortical network;

emotions under COVID-19, however, whether these neural
predictors were specific to COVID-19, rather than negative
emotions in daily life is unclear. Compared with negative
life events in daily life, such as failing an exam, this global
crisis with long-term of self-isolation might be associated
with more intense and chronic negative emotions. Thus,
we applied this predictive model on another longitudinal
sample without COVID-19 and expected a relatively poor
predictive performance. We also trained a predictive model
for daily life negative emotions, which allowed us to cap-
ture the different predictive patterns for negative emotions
under COVID-19 and daily life.

2 MEHTODS

2.1 Participants

This is a large scale, longitudinal study aiming to find a
predictive neural model of negative emotions to the major
life stress events - COVID-19. 901 College students were
registered for this study (273 males, age 17-26 years).
Among them, 604 subjects (177 males, age 17-26 years)

© 2022 IEEE, Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

completed MRI scans and a comprehensive assessment of
their social-psychological profile between September 17, -
December 11, 2019 (Time 1). On February 22, 2020 (Time
2) and April 24, 2020 (Time 3), the subjects were tested on
their psychopathological states, focusing on negative
emotions. The specific testing date of Time 2 and 3 were
selected based on the evolving situation of COVID-19 in
China. Time 2 is around the turning point (peak of exist-
ing cases) of the pandemic, and from this time onwards,
the pandemic is relatively under control. On Time 3 (and
onward), the existing cases in China is below 1500, with a
daily increase less than 150 (Fig. 1A). After matching the
MRI data on Time 1 and the behavior data on Time 1 and
Time 2, We have 542 subjects remained (164 males, age 17-
26 years). The data of these subjects were used to conduct
feature selection and model training. On Time 3, 456 of
these subjects (133 males, age 17-26 years) completed an-
other round of psychopathological assessment. The data
of these 456 subjects were used to conduct model valida-
tion and prediction within-samples. In design, this is part
of an ongoing program - Behavioral Brain Research Pro-
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ject of Chinese Personality (BBP). We will refer to this da-
taset BBP throughout.

In addition to BBP, we have collected another inde-
pendent dataset (n = 90, 18 males, age 18-21 years) for
model validation and predictions out-of-samples. These
subjects completed the MRI scans between June 3, - Sep-
tember 8, 2019, followed by psychopathological assess-
ment on February 22, 2020. It should be noted that both
BBP sample and validation sample consisted with healthy
subjects not being infected by COVID-19. Moreover, we
also adopted a sample (n =101, 24 males, age 18-20 years)
without COVID-19 to prove the specificity of the COVID-
based predictive model. These subjects completed the
MRI scans and psychopathological assessment between
March 13, - April 29, 2018, followed by 3 psychopatholog-
ical assessments (average interval = 1 month).

All participants were healthy, without a history of psy-
chiatric or neurological illnesses prior to admitting to the
project. All participants provided the information consent
document before the experiment and were compensated
with money at the end of the study. The ethical approval
of this study was granted by the Ethics Committee of
Southwest University, and all procedures involved were
in accordance with the sixth revision of the Declaration of
Helsinki.

2.2 Neuroimaging Data Acquisition &
Preprocessing

All neuroimaging data were acquired on a 3T Prisma Sie-
mens Trio scanner, using a 32-channel head coil. Resting-
state fMRI scans (8 mins) were collected using a gradient
echo-planar imaging (EPI) sequence: TR = 2000 ms, TE =
30 ms, flip angle =90 °, FOV =224 x 224 mm?, resolution
matrix = 112 x 112, slices = 62, thickness = 2.0 mm, slice
gap = 0.3 mm, voxel size = 2x 2x2 mm?3. Structural scans
were acquired using a T1l-weighted structural images
were acquired using a magnetization prepared rapid ac-
quisition gradient-echo (MPRAGE) sequence: TR = 2530
ms, TE = 2.98 ms, flip angle = 7°, FOV = 224 x 256 mm?,
resolution matrix = 448 x 512, slices = 192, thickness = 1.0
mm, inversion time = 1100 ms, voxel size = 0.5 x 0.5 x 1
mm?.

The preprocessing procedure was identically per-
formed for GGBBP dataset and the other validation sam-
ples using Statistical Parametric Mapping (SPM) and the
Data Processing & Analysis of Brain Imaging toolbox
(DPABI). [15], [16] The processing procedure included the
following steps: removal of the first 10 EPI scans, correc-
tion of slice timing and head motion, spatial normaliza-
tion, nuisance signal regression, data scrubbing, spatial
smoothing and band-pass filtering. More details are avail-
able in eMethods 1 in the Supplement.

2.3 Social-psychological Profile: Environmental
Factors & Psychological Traits

The assessment of social-psychological profile focus on
two parts: environmental factors and psychological traits,
both of which are assumed to be stable across a long time-
scale.[8], [17]-[22] The environmental factors include so-
cioeconomic status, social relationship, and childhood

. . © 2022 IEEE, Personal use is permitted, but republication/redistribution re
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trauma, etc. The psychological traits include emotion reg-
ulation ability, resilience ability and coping flexibility, etc.
The details of these questionnaires are available in eTable
1 in the Supplement. There were 236 questionnaire meas-
urements in total for each subject, forming a social-psy-
chological profile matrix - S_raw (subjects x items). To
avoid potential confounds from sex and age-related dif-
ference, [23], [24] we regressed out their influence on each
column of S_raw, and used the resulting residual matrix
- S for future analyses. This social-psychological profile
matrix will be used later to select relevant neural features
for the prediction model.

2.4 Emotional Assessments

The mental health problems during the pandemic, espe-
cially those related to emotion disorders, are the current
focus. We therefore tracked their depression, anxiety and
perceived stress levels, both during (Time 2) and after
(Time 3) the worst COVID-situation in China (Fig. 1B). In
the BBP sample, they were measured by self-depression
scale, [25] state anxiety inventory [26] and perceived
stress scale. [27] In the validation sample, they were meas-
ured by beck depression inventory, [28] state anxiety in-
ventory, [26] perceived stress scale, [27] positive affect
and negative affect scale, [29] and post-traumatic stress
disorder scale. [30] In the independent sample without
COVID, they were measured by beck depression inven-
tory, [28] state anxiety inventory, [26] perceived stress
scale. [27] In BBP sample, the predictive model was
trained with 10-fold cross validation. Condiering the mul-
tidimencional construct of negative emotion, principle
component analysis (PCA) was performed on the training
dataset and we took the first principle component (PC) of
their emotional state measurements representing the core
negative emotion scores [31]-[33]. The core negative emo-
tion in the testing dataset were obtained based on the raw
scores of the measures and the principal component coef-
ficients. In the validation sample, the first PC derived
from PCA was used as the core negative emotion. The
core negative emotion scores will be used as the depend-
ent variable (D) in both training and validation of the neu-
ral prediction model.

2.5 Multivariate Neural Profile

To build the neural prediction model, we chose to use
the whole-brain multivariate functional connectivity pat-
tern as model features. This is because emotion related
disorders were shown to be more related to the deficits in
the connections across brain regions than activation
within a region. [34], [35] First, we parcellated the whole
brain into 246 nodes based on Human Brainnetome Atlas
[36] (excluding low-level sensory regions like visual cor-
tex and sensorimotor areas). Then, the blood-oxygena-
tion-level-dependent (BOLD) activity were averaged
across voxels within each region, resulting in BOLD time
series of 179 nodes. After that, a pairwise functional con-
nectivity matrix was constructed for each subject by tak-
ing the fisher-z transformed correlation score between
nodes. Given this matrix is symmetrical, we only kept left
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diagonal values (15931 edges), this gives us a neural pro-
file matrix - N_raw (487x15931, subjects x edges). To con-
trol potential confounds from age, sex and mean frame-
wise displacement (FD) power [37], [38], we regressed out
their influences on each column of N_raw, resulting in the
functional connectivity (FC) matrix N_r. To reduce the di-
mensionality of the data, we performed PCA on the FC
pattern dimension of N_r, keeping only the top 300 PCs
(explaining around 91% of variance). We obtained the fi-
nal neural profile matrix - N (487x300) for model training.
The neural profile matrix for the model testing were ob-
tained based on the raw functional connectivity data and
the principal component coefficients.

2.6 Model Construction

2.6.1 Feature Selection (n = 487)

For the sake of interpretability, which is paramount
in psychiatry research, [39], [40] we selected the neural
features that can be linked to social-psychological profile.

The social-psychological profiles are assumed to be stable,
[8], [21], [22] we expect its related neural features to also
be robust, thereby offering a good generalization and pre-
diction ability when testing either in a later time within-
sample or generalize across-samples (to an independent
dataset, detailed later).

The predictive model was trained with nested cross-
validation, as the outer 10 F-CV loop estimating the gen-
eralizability of the model, and the inner loop determining
the optimal parameter for the LASSO regression model.
In the outer 10 F-CV, the sample were divied into 10 sub-
sets and we used sparse canonical correlation analysis
(sCCA) to align the neural and social-psychological pro-
files on the 9 subsets (training dataset). The data matrix S
(social-psychological profile) and N (multivariate neural
profile) were fed into sCCA to identify the relationships
between the two sets of multidimensional variables (Fig.
2 A: Step 1). This is done by finding two sets of respect
tive linear transformation (i.e., canonical coefficients),
such such that the correlation between two projected vari

A Prediction Framework
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Fig. 2. Schematic overview of the prediction framework. (A) the prediction framework on BBP sample. The whole sample was divided into 10

subsets, 9 of which were used as the training sample and the the remaining one was used as the testing sample. Step1: Feature selection was

performed on training sample and sparse canonical correlation analysis (sCCA) was used to identify FC features, which will be used as predic-

tors in the predictive model. Step2: Model training was performed on training sample, least absolute shrinkage and selection operator (LASSO)

regression algorithm were used to train the predictive model. To avoid overfitting and ensure the generalizability of the model, the dataset was

randomly resampled 100 times, 70% of the training sample were used as training set and 30% as testing set. The model with best prediction

performance was used in the subsequent analysis. (B) Prediction in an independent dataset. To test the generalizability of the predictive model,

it was applied to predict the negative emotions in the validation sample. The FC features were generated using the same principal component

coefficients and unmixing matrices obtained in the BBP sample. Similarly, principal component analysis was used to obtain the core scores of

negative emotions. This figure was inspired by fig. 1 reported in the study by Wang et al. (2018)[41] and fig. 1 reported in the study by Cui et

al. (2018).[42]
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-ables) is maximized. L1 regularization was used in the
process to encourage sparsity [43] so that a small set of
dominate modes can be identified. [41], [44]

The hyperparameters of L1 penalty were tuned in
cross-validation (eFig. 1), the value that yielded the high-
est canonical correlation of the first mode was fixed on the
whole sample to conduct the feature selection analysis.
The sCCA method was implemented with R package
from CRAN (penalized multivariate analysis, PMA). [43]
sCCA estimates unmixing matrices A (300 x 236) and B
(236 x 236) in order to find latent modes with the highest
correlations between U (U=NxA) and V (V=5xB). U repre-
sent the combination of the FC edges and were used as
predictors in the neural prediction model. The neural pre-
dictors of the testing data were obtained based on the
neural profile matrix and the unmixing matrices (A). For
visualization purpose, the unmixing matrices and the
principal component coefficients of N_r were used to gen-
erate the loading of the original FC edges and project the
sCCA modes (U) back to the original FC space (Nr)

2.6.2 Model Training & Validation

We obtained the neural predictors of interest (U, ob-
tained in Time 1) and dependent variable (D) - core nega-
tive emotion scores (obtained in Time 2). The job was to
build a model among the columns of U to predict D. To
achieve this, we trained a LASSO regression model with
L1 regularization (Fig. 2A: Step 2). The L1 regularization
was used here to avoid overfitting and improve the pre-
diction accuracy [45], its hyperparameter is determined
across 100 randomly resampled samples (70% of the orig-
inal sample as training datasets and 30% as testing da-
tasets). LASSO regression model was implemented using
glmnet package. [46] The model performance was quan-
tified by the Pearson correlation and mean absolute error
(MAE) between the actual scores and the predicted scores
in the cross-validation testing sets. The final neural pre-
diction model was selected based on the best cross-vali-
dation performance and was used to estimate the overall
predictive performance in Time 2.

2.7 Model Prediction in An Independent Dataset (n
=90)

To further test the generalizability of the trained model,
we applied the model to predict the negative emotions in
an independent dataset (Fig. 2B). In this dataset, we ex-
tracted the FC sets based on the same template in BBP da-
taset and constructed the FC matrix N_(v_r) (90 x 15931)
in the same way as N_r. To ensure we capture the same
neural features in this independent data set, we obtained
the neural profile matrix - N_v (with analogy to N), based
on the same 300 PCs from N_r, and construct the model
predictors U_v (with analogy to U), using the same un-
mixing matrices A obtained in the BBP dataset. These pre-
dictors were entered in the prediction model with fixed
parameters to predict their core emotion scores.

2.8 Prediction of Negative Emotions in Daily Life
(n=101)

We hypothesized that compare with negative emotions in
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daily life, the present prediction model is more sensitive
to negative emotions under COVID-19. To confirm this
hypothesis, we applied the COVID-based predictive
model on the dataset without COVID. Moreover, to facil-
itate the comparation of the different prediction patterns
for negative emotions under COVID-19 and daily life, we
also trained a predictive model for negative emotions in
daily life, using the same approach of BBP sample.

3 RESULTS

3.1 Negative Emotions Surge as COVID-19
Involves Over Time

We first looked at the emotional state of the subjects,
sampled before (Time 1, September-December 2019), dur-
ing (Time 2, February 22, 2020) and after (Time 3, April 24,
2020) the worst situation of COVID-19 in China (Fig. 1A).
To estimate the effect of time on individual’s emotional
state, while treating subject as random effect (eMethods 2,
Supplement), we used linear mixed model (Ime4 Package
in R)[38]. We found significant increases of their depres-
sion (p =2 x 1019, stress (p = 0.004), and anxiety (only col-
lected data in Time 2 & 3, p = 5.55 x 10°) level over time
(Fig. 1B, eTable 2 in the Supplement). However, there
were no significant changes of negative emotions in an-
other longitudinal sample (tracking for 3 times) without
COVID (see eTable 3, Supplement).

3.2 Multivariate Brain Patterns During Rest were
Qualitatively Different in Subjects with High
vs. Low Negative Emotions

The surge of negative emotions, perhaps, is not sur-
prising given the far-reaching influence of this pandemic
to everyone. It is intriguing to see if such emotion changes
can be predicted from neural activities before the pan-
demic. We used whole-brain resting-state functional con-
nectivity (FC) as a fingerprint of their neural activities
given the robustness of resting state networks, and their
wide relevance to mental disorders. [47]-[49] First, we in-
vestigated whether the brain patterns during rest differ in
subjects with high vs. low negative emotions. For visuali-
zation purpose, we contrasted the FC pattern of subject
with high (top 10%) vs. low (lowest 10%) negative emo-
tion scores in Time 1 (Fig. 1C). Differences can be ob-
served in subcortical system (SubC), dorsal attention net-
work (DAN), default mode network (DMN) and fron-
toparietal network (FPN). Those brain regions are known
to be involved in emotional processing, [50], [51] mental-

izing, [52], [53] executive control, [54], [55] with wide im-

plications in emotion disorders, like depression and anx-

iety. [56]-[59] [48] In addition to comparing changes in

FC strength directly, we can also look for changes in the

hub of resting-state networks (i.e., centrality), we ob-

served differences of the degree centrality between the
two groups in DMN, limbic and subcortical systems, sug-
gesting an organizational change in their neural finger-
print. [60] These results suggest emotional states differ-
ences can be mapped to their multivariate brain patterns:

a logic prior for building neural prediction model of neg-

ative emotions.
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Fig. 3. Social-psychological implications and FC patterns of the robust neural predictors. (A) We present the social-psychological dimension of
top 2 neural predictors (self-control and social interaction) with strongest predict power. The radar map presents items from different social-
psychological domains. Numbers in the inner lines represent loadings for each item in their respective dimension. M1 (orange line) represents
the self-control dimension and M2 (purple line) represents the social interaction dimension. (B) Prediction performance of the trained model.
The correlations between predicted scores and actual scores for the BBP sample in Time 2 and validation sample were presented by the scatter
plot. (C-D) The neuroanatomical locations of the nodes with the strongest loadings and their corresponding FC patterns of the top 2 neural
predictors (B for M1 and C for M2). we summarized the absolute loadings at nodal level and present the top 10 nodes in each pattern. The FC
links of these 10 nodes are thresholded at the 1% according to their absolute loadings in each pattern and then presented with the chord
diagram. We also present the differences of FC patterns between high group (highest 10%) and low group (lowest 10%) of negative emotions
on Time 2 with the radar map. To aid visualization, we choose the FC pattern of DLPFC (M1) and amygdala (M2) as examples. DAN, dorsal
attention network; DMN, default mode network; FPN, frontoparietal network; LimB, limbic network; SubC, subcortical network; VAN, ventral
attention network; DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; OFC, orbitofrontal cortex; IPL, inferior parietal
lobule; MTG, middle temporal gyrus; MFG, middle frontal gyrus; SFG superior frontal gyrus; STS, superior temporal sulcus; PCun, precuneus;
ITG, inferior temporal gyrus; Thal, thalamus; Amyg, amygdala; mofc, medial orbitofrontal cortex, PCC, posterior cingulate cortex; sgACC, sub-
genual anterior cingulate cortex; BG, basal ganglia; mpfc, medial prefrontal cortex.

3.3 Neural Prediction Model Predicts Negative 3.4 Social-psychological Implication of The Neural
Emotion Development within BBP Predictors

To achieve a robust predictive model for negative emo- We used the constructed predictive model to decipher de-

tions, LASSO regression algorithm was performed on cipher social-psychological implication and functional

BBP sample in Time 2, with nested CV. The results re- connectivity pattern of the neural predictors. sCCA algo-

vealed a strong association between actual value and pre- rithm assign each sCCA mode with a specific pattern that

dicted value of negative emotions (r_cv = 0.33, p_cv=_8.88 relates a weighted set of subjective measures to a

x 107, MAE =14.43). Then, the trained model was applied weighted set of functional connections. Thus, we can de-
on BBP sample in Time 2 (r =0.44, p=8.13%, MAE = 14.58, duce the social-psychological implication of the neural
Fig. 3B), confirming the reliability of the model. predictors through its associated subjective measures.
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The predictive model revealed five neural predictors (de-
rived from 4 sCCA modes), which were respectively
associated with social-psychological dimensions includ-
ing self-control, social interaction, emotional support and
stressful life events (see Fig. 4). Here we presented the de-
tailed subjective items corresponding to two neural pre-
dictors with the strongest predictive weight in Fig. 3A.
The self-control mode was driven by items corresponding
to the poor self-control ability in keeping healthy habits,
including “I am lazy”, “I have a hard time breaking bad
habits”, “I am doing things that are bad for me, if they are
fun”. [61] The social interaction mode contained items
quantifying the degree of the negative social interaction
with others, including “I feel alone and apart from others”,
“I teel left out” “I feel that I am no longer close to anyone”.
[62] These connectivity-guided social-psychological di-
mensions emphasized the vital role of self-control and so-
cial interaction in coping with stressful life events.

3.5 Functional Connectivity Patterns of The
Neural Predictors
Next, we decoded the neural patterns of the top two pre-
dictors (i.e., the self-control mode and the social interac-
tion mode). To extract key information from the high-di-
mensional connectivity data, we calculated the loading of
the original FCs for each neural predictor, then summa-
rized the absolute loadings for each brain node. Higher
value indicates a stronger involvement of such node in a
specific neural predictor? We presented the anatomical
distribution of the top 10 most important (based on the
absolute loading) brain regions (Fig. 3C for self-control
mode and Fig. 3D for social interaction mode, details of
the 10 nodes are available in eTable 4 in the supplement).
We also presented the FC patterns with a chord dia-
gram thresholded at the top 1% according to the absolute
loading of the FC. The FC pattern of the self-control mode
was associated with nodes including dorsal lateral pre-
frontal cortex (DLPFC), ventrolateral prefrontal cortex
(VLPFC), orbitofrontal cortex (OFC), inferior parietal lob-
ule (IPL), middle temporal gyrus (MTG), and superior
temporal sulcus (STS), regions commonly implicated in
cognitive control. [63]-[66] The FC pattern of social inter-
action mode was associated with VLPFC, medial orbito-
frontal cortex (MOFC), IPL, amygdala and thalamus, all
of which have been implicated in emotional regulation.
[51], [67] To aid the interpretation of the results, we fur-
ther split the FC patterns of subjects with high (top 10%)
vs. low (lowest 10%) negative emotion scores in Time 2.
We choose the FC pattern of DLPFC (self-control mode)
and amygdala (social interaction mode) as examples (Fig.
3C-D: radar map), given their wide implications and re-
ported involvement in emotional disorder. [68]-[70]

3.6 Neural Prediction Model Generalizes Well Out-
of-samples

To test the generalizability of the model out-of-samples,

an external validation was performed on an independent

dataset experienced COVID-19. The BBP-based predictive

model were then applied to an independent validation

sample to generate the predicted scores of their negative

. . © 2022 IEEE, Personal use is permitted, but republication/redistribution re
Authorized licensed use limited to: Beijing Normal University. Downloaded on

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

emotions. The model performance was estimated by the
Pearson correlation between the predicted scores and ac-
tual scores (r = 0.22, p = 0.035, MAE=3.23), which con-
firmed generalizability of the model and the practical
value of these neural markers.
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Fig. 4. Regression coefficients of the predictive model for negative
emotions in COVID-19 and daily life. The predictive model for
COVID-19 emphasized the self-control dimension and social inter-
action dimension, while the predictive model for daily life emphasized
the impulsiveness dimension, childhood trauma dimension.

Moreover, to test whether the predictive model is more
sensitive to negative emotions in COVID-19, rather than
daily life, COVID-based predictive model were then ap-
plied to the dataset without COVID. The results revealed
a marginal significance between predicted scores and ac-
tual scores (r = 0.162, p = 0.087, MAE=5.24), which sup-
ported the specificity of the COVID-based predictive
model.

Finally, we trained a predictive model for negative
emotions in daily life, using the same approach in BBP
sample (see Fig. 4 and eResults 1 in the supplement). The
predictive model worked well in this sample (r=0.44,
p=4.4 x 10, MAE=4.14), but not good in BBP sample
(r=0.05, p=0.22, MAE=6.67). In summary, the prediction
model for negative emotions under COVID-19 demon-
strate 2 key predictors: self-control and the social interac-
tion, while in the prediction model for daily life negative
emotions emphasized the role of impulsiveness, child-
hood trauma and coping flexibility (see Fig. 4). This might
imply different neural basis underlying the emotional re-
sponse toward daily life stress versus COVID-19 related
stress.

4 DISCUSSION

Individual’s mental health has been severely affected
by this pandemic, [71] which implicate the urgency and
sign ificance of exploring neural markers for negative
emotions caused by COVID-19. The present study ad-
dressed this question by exploring the specific FC pat-
terns that predict individual’s negative emotions under
stressful life events. We do this by applying LASSO re-
gression algorithm to a large-scale dataset. LASSO is a
particular case of the penalized least squares regression
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with L1-penalty function. When there is high correlation in
the group of predictors, LASSO chooses only one among
them and shrinks the others to zero, which contribute to
improve the prediction accuracy and produce easily inter-
pretable models.[72] This dataset in the present is unique
in that it contains longitudinal and multi-dimensional data
from subject that suffering the same stressful life events
(i-e., COVID-19). This dataset serves as a valuable resource
for exploring neural markers of developmental course, and
risk/protective factors for psychiatric symptom under a
sudden public health accident.

Based on this dataset, we have established a predictive
neural model using psychological-meaningful FC features
(associated with social-psychological dimensions, like self-
control, social interaction, etc.). We chose to only use these
features because interpretability is just as important as pre-
dictivity (if not more) in real life setting. We show this
model can predict negative emotions during COVID-19.
We have also validated this model on an independent ex-
ternal dataset. The advantage of having a neural model is
that it is free from subjectivity inherit in self report, and it
does not require one to be self-aware of his own mental
deficits. This makes it a more objective model. We hope it
can be a useful tool for screening potential risky popula-
tion in basic mental health care.

This model reveals two critical neural predictors for
negative emotions under COVID-19. The first is associated
with self-control ability, emphasizing the role of frontal
and parietal cortex. [64], [73], [74] Items in self-control
mode refers to the capacity to keep a healthy and disci-
plined life, which constitute the foundation of adaptive be-
haviors. [75], [76] The dysfunction of this system, mani-
fested as inefficient deployment of cognitive resources for
flexible, adaptive responses to a changing world, were
shown to be associated with the symptoms of various men-
tal disorders. [77]-[80] The second predictor was associ-
ated with social interaction. Consistent with previous stud-
ies, [81] our results suggested interpersonal emotion regu-
lation was another effective coping strategy: seeking sup-
port from others to deal with stress. The neural pattern as-
sociated with social interaction demonstrated a significant
involvement of frontal-limbic system, [82]-[84] especially
the reciprocal PFC-amygdala relationship, which were
previously reported to be the neural mechanism underly-
ing emotion regulation. [85], [86] Abnormal FCs within this
pattern might accompanied with deficits in emotion pro-
cessing and regulation, which ultimately result in in-
creased negative emotions under stress. Based on the
aforementioned points, we speculate that, neural defects in
cognitive control system and emotion regulation system
might be the risk factors for the negative emotions under
stress.

Unlike COVID-based model, the predictive model for
daily life negative emotions supported that neural predic-
tors associated with impulsiveness, childhood trauma and
copying flexibility were important for temporary and mild
negative emotions. However, facing with chronic and se-
vere stress during COVID-19, self-control and positive so-
cial interaction might be more effective coping strategies,
for example, eat, sleep, work and exercise regularly,[87],
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[88] keep interactions with family and friends. [89], [90]

The present study utilized the correlation structure be-
tween neural and psychological profiles to build a predic-
tive model with good interpretability. We note all partici-
pants in the present study were healthy subjects, and their
risk of being infected with COVID-19 is relatively low. This
model is therefore intended to be applicable to general
public, but not to clinical populations. It might be informa-
tive for policymakers, and mental health practitioners for
identifying potential risky population of emotional disor-
der during COVID-19.
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