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Authors’ response 

We thank the reviewers for their enthusiasm and positive evaluation of our manuscript. We also appreciate their 

thoughtful and constructive comments and have revised the manuscript to address every point made. We feel 

that the revisions have strengthened our manuscript and hope that the reviewers feel that it is now ready for pub-

lication. 

Reviewer # 1 

1. The authors cited one paper (Mounce, Keogh, and Eccleston 2010) as a justification for extracting a general 

negative emotion score. While this paper indeed used a similar approach and obtained a general distress com-

ponent, I would like to see more supporting literature, especially theoretical ones clarifying the meaning of the 

core negative emotion score. Also, these citations should be added to the main manuscript. 

Response: 

Previous studies have suggested the multidimensional structure of negative emotion (Stokes and Levin 1990; 

Watson and Clark 1984) and provide evidence that it is highly related to the symptoms and diagnosis of both 

anxiety and depression (Brown et al. 1997; Clark and Watson 1991; Watson and Clark 1984). Lovibond et al. 

(1995) developed the depression anxiety stress scales to measure the general negative affective syndromes 

(Lovibond and Lovibond 1995) . Brown et al. (1997) have suggested that the subscales of the DASS may meas-

ure the three dimensions specified in the tripartite model of negative affect: low positive affect (Depression), 

physiological hyperarousal (Anxiety), and negative affect (Stress) (Brown et al. 1997). Based on these evidences, 

it’s reasonable to use PCA to extract core negative emotion scores based on the raw measures of depression, 

anxiety and stress. 

  We also added these citations in the main manuscript. Please see section 2.4, line 16-21. 

  

2. I do not find the authors' response to this question: "Second, since the PCA was performed on the whole sam-

ple, there was also a data leakage problem similar to the sCCA". 

Response: 

  We apologize for not describe our revision clearly. PCA and SCCA only performed on the training dataset, and 

the testing dataset were obtained based on the component coefficients extract form PCA and SCCA process.  

The detail of the prediction pipeline was as follows: the whole dataset was divided into 10 subsets. Then 9 of the 

subsets were used as training sample, and the remaining one was used as the testing sample. 2, PCA was per-

formed on the training data to obtain individual’s negative emotion score, the negative emotion of testing data 
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were obtained based on the raw measures and the component coefficients of PCA. Then PCA was used to re-

duce the dimension of the raw FC matrix in the training dataset, keeping only the top 300 PCs as the neural 

profile matrix. The neural profile matrix of the testing dataset were obtained based on the raw FC matrix and 

the component coefficients of PCA. 3, SCCA were applied to extract psychological meaningful neural patterns 

based on the training data，the neural patterns of the testing data were obtained based on the neural profile ma-

trix and the unmixing matrices of SCCA. 4, The predictive model was trained using Lasso regression algorithm. 

We also revised these details in the manuscript, please see section 2.4 line 16-23, section 2.5, line 16-28. 

Section 2.6.1, paragraph 2, line 10-14. 

  

3. About the correlations between the predicted and actual scores in Table 2 of the response letter, did the au-

thors train a new model for each of the indicators (e.g., depression, anxiety)? If so, I would like to see the proce-

dure to be reported in more detail and added to the main manuscript or as supplementary information. 

Response: 

We apologize for not describe our revision clearly. As the reviewer suggested, we trained a new model for 

each of the indicators, including depression, anxiety and stress, using the same prediction pipeline in the manu-

script. We also present the results in the supplementary information eMethods 4, eResults 2 and eTable 6. 

eTable 6 Correlations between predicted scores and actual scores in the BBP sample 

  r p MAE MAPE 
Depression 0.18 1.89 × 10-5 8.94 0.18 
Anxiety 0.26 4.66 × 10-10 8.31 0.20 
Stress 0.31 6.12 × 10-14 6.25 0.23 

  

  

  

Reference: 

Brown, Timothy A., Bruce F. Chorpita, William Korotitsch, and David H. Barlow. 1997. “Psychometric Properties 

of the Depression Anxiety Stress Scales (DASS) in Clinical Samples.” Behaviour Research and Therapy 

35(1):79–89. 
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iour Research and Therapy 33(3):335–43. 
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A neural predictive model of negative 
emotions for COVID-19  

Yu Mao, Dongtao Wei, Wenjing Yang, Qunlin Chen, Jiangzhou Sun, Yaxu Yu, Yu Li, 
Kaixiang Zhuang, Xiaoqin Wang, Li He, Tingyong Feng, Xu Lei, Qinghua He, Hong 
Chen, Shaozheng Qin, Yunzhe Liu and Jiang Qiu 

Abstract—The long-lasting global pandemic of Coronavirus disease 2019 (COVID-19) has changed our daily life in many ways 

and put heavy burden on our mental health. To safeguard the mental health of the public, a predictive model of negative 

emotions during COVID-19 is of great importance for identifying potential risky population. To establish a neural predictive 

model achieving both good interpretability and predictivity, we have collected a large-scale (n=542) longitudinal dataset, 

alongside two independent samples for external validation. The whole-brain resting-state neural activity and social-

psychological profile of the subjects were obtained from Sept. to Dec. 2019 (Time 1). Their negative emotions were tracked and 

re-assessed twice, on Feb 22 (Time 2) and Apr 24 (Time 3), 2020, respectively. We built a predictive model based on 

psychological meaningful resting state neural activities. We first applied canonical correlation analysis on both the neural 

profiles and psychological profiles collected on Time 1, this step selects only the psychological meaningful neural patterns for 

later model construction. The two most important neural patterns are associated with self-control and social interaction. We then 

trained the neural predictive model using those identified features on data obtained on Time 2. It achieved a good prediction 

performance with-in sample (r = 0.44, p = 8.13-27). This study established an effective neural prediction model of negative 

emotions, achieving good interpretability and predictivity. It may be useful for identifying potential risky population of emotional 

disorders during COVID-19. 

Index Terms—predictive model, negative emotions, COVID-19 

  

——————————   ◆   —————————— 

1 INTRODUCTION

N this global pandemic of Coronavirus disease 2019 
(COVID-19), our life experienced radical changes. 

Around the world, most of us, have been put in lockdown 
at least once, and even till today, social distancing is a re-
quirement in most of the countries. This major life stress 
events is likely to have enduring influence on our emo-
tional wellbeing and mental health.[1] Surging increase of 
depression and anxiety disorders[2], [3] is recognized as 
one of possible consequences. It is therefore crucial to es-
tablish neural predictive models of psychological vulnera-
bility to such stressful life events, which will help us to 
identify potential risky population before they develop 
emotional disorders. One prominent feature of neural pre-
dictive model is its objectivity compared with self- report 
approaches. Moreover, neural predictive models are useful 

for understanding the neurophysiological bases underly-
ing individual differences in vulnerability of emotional 
disorders under stress. So far, the most common approach 
for finding such neural markers is by correlating psycho-
physiological symptoms with neuroimaging data.[4] How-
ever, the low interpretability of the neural markers and the 
high homogeneity of the data used both in feature selection 
and prediction against the exploration of the potential so-
cial-psychological and neurobiological risk for emotional 
disorders.[5], [6] Furthermore, lack of independent dataset 
to facilitate the external validation hinder the generaliza-
tion of the predictive model in some degree.[7] 

People differ in both social-environmental and individ-
ual-trait like factors, [8], [9] both of which are shown to 
have a neural basis in their intrinsic functional connectivity 
during rest [10], [11] and proved to be robust protec-
tive/risk factors for emotion disorders. [12]–[14] Thus in 
this study, we opt to build an emotion predictive model by 
combining both their neural and social-psychological pro-
files (in a large sample size, n = 542, longitudinal design, 
see details in Methods), the approaches which were ex-
pected to generate interpretable neural markers and robust 
prediction performance. To be predictive, those profiles 
were taken before COVID-19 (Time 1: September to De-
cember 2019), their psychopathological states (focusing on 
negative emotions) were tracked twice during the COVID-
19 (Time 2: February 22, Time 3: April 24, 2020). We have 
also collected another independent dataset (n = 90) to test 
the out-of-sample generalizability of the model. 

We have constructed a predictive model for negative  
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Fig. 1. Descriptive information of COVID-19 and corresponding emotional changes. (A) The figure presented the number of cumulative con-

firmed cases (grey line), cumulative cured cases (pink line), existing confirmed cases (blue line) and cumulative death toll (green line) in China 

from Jan 19 to Jun 27, 2020. After the rapid growth from Jan 19 to Feb 19, the existing confirmed cases began to fall, and less than 3000 in 

early April. The orange line indicated second time point (Feb 22, 2020) of the psychopathological assessment, around the turning point of the 

pandemic. The purple line indicated the third time point (Apr 24, 2020) of the psychopathological assessment, the time when existing cases in 

China is close to 0. (B) Anxiety (only collected data in Time 2 & 3), stress and depression surge as COVID-19 evolves over time. For each 

domain, individual’s scores divided by the maximum value of the observed scores and the mean values were obtained within each time point. 

Significant increase can be visually observed across time on anxiety, stress and depression. In addition, LME also indicated a significant effect 

of time on individual’s emotion state (eTable 2, Supplement). (C) The different FC patterns of subject with high (highest 10%) vs. low (lowest 

10%) negative emotions in Time 1 can be visually observed in the connectivity matrix, especially the FC between SubC, DAN, DMN and FPN. 

Furthermore, the brain map demonstrated difference of the degree centrality between 2 groups. Note that absolute value of the difference of 

the degree centrality between 2 groups were used to generate the figure. DAN, dorsal attention network; DMN, default mode network; FPN, 

frontoparietal network; SubC, subcortical network; 

 
emotions under COVID-19, however, whether these neural 
predictors were specific to COVID-19, rather than negative 
emotions in daily life is unclear. Compared with negative 
life events in daily life, such as failing an exam, this global 
crisis with long-term of self-isolation might be associated 
with more intense and chronic negative emotions. Thus, 
we applied this predictive model on another longitudinal 
sample without COVID-19 and expected a relatively poor 
predictive performance. We also trained a predictive model 
for daily life negative emotions, which allowed us to cap-
ture the different predictive patterns for negative emotions 
under COVID-19 and daily life. 

2 MEHTODS 

2.1 Participants 

This is a large scale, longitudinal study aiming to find a 
predictive neural model of negative emotions to the major 
life stress events - COVID-19. 901 College students were 
registered for this study (273 males, age 17-26 years). 
Among them, 604 subjects (177 males, age 17-26 years) 

completed MRI scans and a comprehensive assessment of 
their social-psychological profile between September 17, - 
December 11, 2019 (Time 1). On February 22, 2020 (Time 
2) and April 24, 2020 (Time 3), the subjects were tested on 
their psychopathological states, focusing on negative 
emotions. The specific testing date of Time 2 and 3 were 
selected based on the evolving situation of COVID-19 in 
China. Time 2 is around the turning point (peak of exist-
ing cases) of the pandemic, and from this time onwards, 
the pandemic is relatively under control. On Time 3 (and 
onward), the existing cases in China is below 1500, with a 
daily increase less than 150 (Fig. 1A). After matching the 
MRI data on Time 1 and the behavior data on Time 1 and 
Time 2, We have 542 subjects remained (164 males, age 17-
26 years). The data of these subjects were used to conduct 
feature selection and model training. On Time 3, 456 of 
these subjects (133 males, age 17-26 years) completed an-
other round of psychopathological assessment. The data 
of these 456 subjects were used to conduct model valida-
tion and prediction within-samples. In design, this is part 
of an ongoing program - Behavioral Brain Research Pro-
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ject of Chinese Personality (BBP). We will refer to this da-
taset BBP throughout. 

In addition to BBP, we have collected another inde-
pendent dataset (n = 90, 18 males, age 18-21 years) for 
model validation and predictions out-of-samples. These 
subjects completed the MRI scans between June 3, - Sep-
tember 8, 2019, followed by psychopathological assess-
ment on February 22, 2020. It should be noted that both 
BBP sample and validation sample consisted with healthy 
subjects not being infected by COVID-19. Moreover, we 
also adopted a sample (n = 101, 24 males, age 18-20 years) 
without COVID-19 to prove the specificity of the COVID-
based predictive model. These subjects completed the 
MRI scans and psychopathological assessment between 
March 13, - April 29, 2018, followed by 3 psychopatholog-
ical assessments (average interval = 1 month). 

All participants were healthy, without a history of psy-
chiatric or neurological illnesses prior to admitting to the 
project. All participants provided the information consent 
document before the experiment and were compensated 
with money at the end of the study. The ethical approval 
of this study was granted by the Ethics Committee of 
Southwest University, and all procedures involved were 
in accordance with the sixth revision of the Declaration of 
Helsinki. 

2.2  Neuroimaging Data Acquisition & 
Preprocessing 

All neuroimaging data were acquired on a 3T Prisma Sie-
mens Trio scanner, using a 32-channel head coil. Resting-
state fMRI scans (8 mins) were collected using a gradient 
echo-planar imaging (EPI) sequence: TR = 2000 ms, TE = 
30 ms, flip angle = 90 °, FOV = 224 × 224 mm2，resolution 
matrix = 112 × 112, slices = 62, thickness = 2.0 mm, slice 
gap = 0.3 mm, voxel size = 2× 2×2 mm3. Structural scans 
were acquired using a T1-weighted structural images 
were acquired using a magnetization prepared rapid ac-
quisition gradient-echo (MPRAGE) sequence: TR = 2530 
ms, TE = 2.98 ms, flip angle = 7°, FOV = 224 × 256 mm2, 
resolution matrix = 448 × 512, slices = 192, thickness = 1.0 
mm, inversion time = 1100 ms, voxel size = 0.5 × 0.5 × 1 
mm3. 

The preprocessing procedure was identically per-
formed for GGBBP dataset and the other validation sam-
ples using Statistical Parametric Mapping (SPM) and the 
Data Processing & Analysis of Brain Imaging toolbox 
(DPABI). [15], [16] The processing procedure included the 
following steps: removal of the first 10 EPI scans, correc-
tion of slice timing and head motion, spatial normaliza-
tion, nuisance signal regression, data scrubbing, spatial 
smoothing and band-pass filtering. More details are avail-
able in eMethods 1 in the Supplement. 

2.3 Social-psychological Profile: Environmental 
Factors & Psychological Traits 

The assessment of social-psychological profile focus on 
two parts: environmental factors and psychological traits, 
both of which are assumed to be stable across a long time-
scale.[8], [17]–[22] The environmental factors include so-
cioeconomic status, social relationship, and childhood 

trauma, etc. The psychological traits include emotion reg-
ulation ability, resilience ability and coping flexibility, etc. 
The details of these questionnaires are available in eTable 
1 in the Supplement. There were 236 questionnaire meas-
urements in total for each subject, forming a social-psy-
chological profile matrix - S_raw (subjects x items). To 
avoid potential confounds from sex and age-related dif-
ference, [23], [24] we regressed out their influence on each 
column of S_raw, and used the resulting residual matrix 
- S for future analyses. This social-psychological profile 
matrix will be used later to select relevant neural features 
for the prediction model. 

2.4 Emotional Assessments 

The mental health problems during the pandemic, espe-
cially those related to emotion disorders, are the current 
focus. We therefore tracked their depression, anxiety and 
perceived stress levels, both during (Time 2) and after 
(Time 3) the worst COVID-situation in China (Fig. 1B). In 
the BBP sample, they were measured by self-depression 
scale, [25] state anxiety inventory [26] and perceived 
stress scale. [27] In the validation sample, they were meas-
ured by beck depression inventory, [28] state anxiety in-
ventory, [26] perceived stress scale, [27] positive affect 
and negative affect scale, [29] and post-traumatic stress 
disorder scale. [30] In the independent sample without 
COVID, they were measured by beck depression inven-
tory, [28] state anxiety inventory, [26] perceived stress 
scale. [27] In BBP sample, the predictive model was 
trained with 10-fold cross validation. Condiering the mul-
tidimencional construct of negative emotion, principle 
component analysis (PCA) was performed on the training 
dataset and we took the first principle component (PC) of 
their emotional state measurements representing the core 
negative emotion scores [31]–[33]. The core negative emo-
tion in the testing dataset were obtained based on the raw 
scores of the measures and the principal component coef-
ficients. In the validation sample, the first PC derived 
from PCA was used as the core negative emotion. The 
core negative emotion scores will be used as the depend-
ent variable (D) in both training and validation of the neu-
ral prediction model. 

2.5 Multivariate Neural Profile 

To build the neural prediction model, we chose to use 
the whole-brain multivariate functional connectivity pat-
tern as model features. This is because emotion related 
disorders were shown to be more related to the deficits in 
the connections across brain regions than activation 
within a region. [34], [35] First, we parcellated the whole 
brain into 246 nodes based on Human Brainnetome Atlas 
[36] (excluding low-level sensory regions like visual cor-
tex and sensorimotor areas). Then, the blood-oxygena-
tion-level-dependent (BOLD) activity were averaged 
across voxels within each region, resulting in BOLD time 
series of 179 nodes. After that, a pairwise functional con-
nectivity matrix was constructed for each subject by tak-
ing the fisher-z transformed correlation score between 
nodes. Given this matrix is symmetrical, we only kept left 
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diagonal values (15931 edges), this gives us a neural pro-
file matrix - N_raw (487x15931, subjects x edges). To con-
trol potential confounds from age, sex and mean frame-
wise displacement (FD) power [37], [38], we regressed out 
their influences on each column of N_raw, resulting in the 
functional connectivity (FC) matrix N_r. To reduce the di-
mensionality of the data, we performed PCA on the FC 
pattern dimension of N_r, keeping only the top 300 PCs 
(explaining around 91% of variance). We obtained the fi-
nal neural profile matrix - N (487×300) for model training. 
The neural profile matrix for the model testing were ob-
tained based on the raw functional connectivity data and 
the principal component coefficients. 

2.6  Model Construction 

2.6.1 Feature Selection (n = 487) 

For the sake of interpretability, which is paramount 
in psychiatry research, [39], [40] we selected the neural 
features that can be linked to social-psychological profile. 

The social-psychological profiles are assumed to be stable, 
[8], [21], [22] we expect its related neural features to also 
be robust, thereby offering a good generalization and pre-
diction ability when testing either in a later time within-
sample or generalize across-samples (to an independent 
dataset, detailed later). 

The predictive model was trained with nested cross-
validation, as the outer 10 F-CV loop estimating the gen-
eralizability of the model, and the inner loop determining 
the optimal parameter for the LASSO regression model. 
In the outer 10 F-CV, the sample were divied into 10 sub-
sets and we used sparse canonical correlation analysis 
(sCCA) to align the neural and social-psychological pro-
files on the 9 subsets (training dataset). The data matrix S 
(social-psychological profile) and N (multivariate neural 
profile) were fed into sCCA to identify the relationships 
between the two sets of multidimensional variables (Fig. 
2 A: Step 1). This is done by finding two sets of respect 
tive linear transformation (i.e., canonical coefficients), 
such such that the correlation between two projected vari

Fig. 2.  Schematic overview of the prediction framework. (A) the prediction framework on BBP sample. The whole sample was divided into 10 

subsets, 9 of which were used as the training sample and the the remaining one was used as the testing sample. Step1: Feature selection was 

performed on training sample and sparse canonical correlation analysis (sCCA) was used to identify FC features, which will be used as predic-

tors in the predictive model. Step2: Model training was performed on training sample, least absolute shrinkage and selection operator (LASSO) 

regression algorithm were used to train the predictive model. To avoid overfitting and ensure the generalizability of the model, the dataset was 

randomly resampled 100 times, 70% of the training sample were used as training set and 30% as testing set. The model with best prediction 

performance was used in the subsequent analysis. (B) Prediction in an independent dataset. To test the generalizability of the predictive model, 

it was applied to predict the negative emotions in the validation sample. The FC features were generated using the same principal component 

coefficients and unmixing matrices obtained in the BBP sample. Similarly, principal component analysis was used to obtain the core scores of 

negative emotions. This figure was inspired by fig. 1 reported in the study by Wang et al. (2018)[41] and fig. 1 reported in the study by Cui et 

al. (2018).[42] 
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-ables) is maximized. L1 regularization was used in the 
process to encourage sparsity [43] so that a small set of 
dominate modes can be identified. [41], [44] 

 The hyperparameters of L1 penalty were tuned in 
cross-validation (eFig. 1), the value that yielded the high-
est canonical correlation of the first mode was fixed on the 
whole sample to conduct the feature selection analysis. 
The sCCA method was implemented with R package 
from CRAN (penalized multivariate analysis, PMA). [43] 
sCCA estimates unmixing matrices A (300 x 236) and B 
(236 × 236) in order to find latent modes with the highest 
correlations between U (U=N×A) and V (V=S×B). U repre-
sent the combination of the FC edges and were used as 
predictors in the neural prediction model. The neural pre-
dictors of the testing data were obtained based on the 
neural profile matrix and the unmixing matrices (A). For 
visualization purpose, the unmixing matrices and the 
principal component coefficients of N_r were used to gen-
erate the loading of the original FC edges and project the 
sCCA modes (U) back to the original FC space (Nr) 

2.6.2 Model Training  & Validation  

We obtained the neural predictors of interest (U, ob-
tained in Time 1) and dependent variable (D) - core nega-
tive emotion scores (obtained in Time 2). The job was to 
build a model among the columns of U to predict D. To 
achieve this, we trained a LASSO regression model with 
L1 regularization (Fig. 2A: Step 2). The L1 regularization 
was used here to avoid overfitting and improve the pre-
diction accuracy [45], its hyperparameter is determined 
across 100 randomly resampled samples (70% of the orig-
inal sample as training datasets and 30% as testing da-
tasets). LASSO regression model was implemented using 
glmnet package. [46] The model performance was quan-
tified by the Pearson correlation and mean absolute error 
(MAE) between the actual scores and the predicted scores 
in the cross-validation testing sets. The final neural pre-
diction model was selected based on the best cross-vali-
dation performance and was used to estimate the overall 
predictive performance in Time 2. 

2.7  Model Prediction in An Independent Dataset (n 
= 90) 

To further test the generalizability of the trained model, 
we applied the model to predict the negative emotions in 
an independent dataset (Fig. 2B). In this dataset, we ex-
tracted the FC sets based on the same template in BBP da-
taset and constructed the FC matrix N_(v_r) (90 x 15931) 
in the same way as N_r. To ensure we capture the same 
neural features in this independent data set, we obtained 
the neural profile matrix - N_v (with analogy to N), based 
on the same 300 PCs from N_r, and construct the model 
predictors U_v (with analogy to U), using the same un-
mixing matrices A obtained in the BBP dataset. These pre-
dictors were entered in the prediction model with fixed 
parameters to predict their core emotion scores.  

2.8  Prediction of Negative Emotions in Daily Life 
(n = 101) 

We hypothesized that compare with negative emotions in 

daily life, the present prediction model is more sensitive 
to negative emotions under COVID-19. To confirm this 
hypothesis, we applied the COVID-based predictive 
model on the dataset without COVID. Moreover, to facil-
itate the comparation of the different prediction patterns 
for negative emotions under COVID-19 and daily life, we 
also trained a predictive model for negative emotions in 
daily life, using the same approach of BBP sample. 

3 RESULTS 

3.1 Negative Emotions Surge as COVID-19 
Involves Over Time 

We first looked at the emotional state of the subjects, 
sampled before (Time 1, September-December 2019), dur-
ing (Time 2, February 22, 2020) and after (Time 3, April 24, 
2020) the worst situation of COVID-19 in China (Fig. 1A). 
To estimate the effect of time on individual’s emotional 
state, while treating subject as random effect (eMethods 2, 
Supplement), we used linear mixed model (lme4 Package 
in R)[38]. We found significant increases of their depres-
sion (p = 2 x 10-16), stress (p = 0.004), and anxiety (only col-
lected data in Time 2 & 3, p = 5.55 x 10-5) level over time 
(Fig. 1B, eTable 2 in the Supplement). However, there 
were no significant changes of negative emotions in an-
other longitudinal sample (tracking for 3 times) without 
COVID (see eTable 3, Supplement).  

3.2  Multivariate Brain Patterns During Rest were 
Qualitatively Different in Subjects with High 
vs. Low Negative Emotions 

The surge of negative emotions, perhaps, is not sur-
prising given the far-reaching influence of this pandemic 
to everyone. It is intriguing to see if such emotion changes 
can be predicted from neural activities before the pan-
demic. We used whole-brain resting-state functional con-
nectivity (FC) as a fingerprint of their neural activities 
given the robustness of resting state networks, and their 
wide relevance to mental disorders. [47]–[49] First, we in-
vestigated whether the brain patterns during rest differ in 
subjects with high vs. low negative emotions. For visuali-
zation purpose, we contrasted the FC pattern of subject 
with high (top 10%) vs. low (lowest 10%) negative emo-
tion scores in Time 1 (Fig. 1C). Differences can be ob-
served in subcortical system (SubC), dorsal attention net-
work (DAN), default mode network (DMN) and fron-
toparietal network (FPN). Those brain regions are known 
to be involved in emotional processing, [50], [51] mental-
izing, [52], [53] executive control, [54], [55] with wide im-
plications in emotion disorders, like depression and anx-
iety. [56]–[59]  [48] In addition to comparing changes in 
FC strength directly, we can also look for changes in the 
hub of resting-state networks (i.e., centrality), we ob-
served differences of the degree centrality between the 
two groups in DMN, limbic and subcortical systems, sug-
gesting an organizational change in their neural finger-
print. [60] These results suggest emotional states differ-
ences can be mapped to their multivariate brain patterns: 
a logic prior for building neural prediction model of neg-
ative emotions.
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Fig. 3. Social-psychological implications and FC patterns of the robust neural predictors. (A) We present the social-psychological dimension of 

top 2 neural predictors (self-control and social interaction) with strongest predict power. The radar map presents items from different social-

psychological domains. Numbers in the inner lines represent loadings for each item in their respective dimension. M1 (orange line) represents 

the self-control dimension and M2 (purple line) represents the social interaction dimension. (B) Prediction performance of the trained model. 

The correlations between predicted scores and actual scores for the BBP sample in Time 2 and validation sample were presented by the scatter 

plot. (C-D) The neuroanatomical locations of the nodes with the strongest loadings and their corresponding FC patterns of the top 2 neural 

predictors (B for M1 and C for M2). we summarized the absolute loadings at nodal level and present the top 10 nodes in each pattern. The FC 

links of these 10 nodes are thresholded at the 1% according to their absolute loadings in each pattern and then presented with the chord 

diagram. We also present the differences of FC patterns between high group (highest 10%) and low group (lowest 10%) of negative emotions 

on Time 2 with the radar map. To aid visualization, we choose the FC pattern of DLPFC (M1) and amygdala (M2) as examples. DAN, dorsal 

attention network; DMN, default mode network; FPN, frontoparietal network; LimB, limbic network; SubC, subcortical network; VAN, ventral 

attention network; DLPFC, dorsolateral prefrontal cortex; VLPFC, ventrolateral prefrontal cortex; OFC, orbitofrontal cortex; IPL, inferior parietal 

lobule; MTG, middle temporal gyrus; MFG, middle frontal gyrus; SFG superior frontal gyrus; STS, superior temporal sulcus; PCun, precuneus; 

ITG, inferior temporal gyrus; Thal, thalamus; Amyg, amygdala; mofc, medial orbitofrontal cortex, PCC, posterior cingulate cortex; sgACC, sub-

genual anterior cingulate cortex; BG, basal ganglia; mpfc, medial prefrontal cortex. 

3.3  Neural Prediction Model Predicts Negative 
Emotion Development within BBP 

To achieve a robust predictive model for negative emo-
tions, LASSO regression algorithm was performed on 
BBP sample in Time 2, with nested CV. The results re-
vealed a strong association between actual value and pre-
dicted value of negative emotions (r_cv = 0.33, p_cv = 8.88 
x 10-16, MAE = 14.43). Then, the trained model was applied 
on BBP sample in Time 2 (r = 0.44, p = 8.13-27, MAE = 14.58, 
Fig. 3B), confirming the reliability of the model. 
 

3.4  Social-psychological Implication of The Neural 
Predictors 

We used the constructed predictive model to decipher de-
cipher social-psychological implication and functional 
connectivity pattern of the neural predictors. sCCA algo-
rithm assign each sCCA mode with a specific pattern that 
relates a weighted set of subjective measures to a 
weighted set of functional connections. Thus, we can de-
duce the social-psychological implication of the neural 
predictors through its associated subjective measures. 
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The predictive model revealed five neural predictors (de-
rived from 4 sCCA modes), which were respectively 
associated with social-psychological dimensions includ-
ing self-control, social interaction, emotional support and 
stressful life events (see Fig. 4). Here we presented the de-
tailed subjective items corresponding to two neural pre-
dictors with the strongest predictive weight in Fig. 3A. 
The self-control mode was driven by items corresponding 
to the poor self-control ability in keeping healthy habits, 
including “I am lazy”, “I have a hard time breaking bad 
habits”, “I am doing things that are bad for me, if they are 
fun”. [61] The social interaction mode contained items 
quantifying the degree of the negative social interaction 
with others, including “I feel alone and apart from others”, 
“I feel left out” “I feel that I am no longer close to anyone”. 
[62] These connectivity-guided social-psychological di-
mensions emphasized the vital role of self-control and so-
cial interaction in coping with stressful life events. 

3.5  Functional Connectivity Patterns of The 
Neural Predictors 

Next, we decoded the neural patterns of the top two pre-
dictors (i.e., the self-control mode and the social interac-
tion mode). To extract key information from the high-di-
mensional connectivity data, we calculated the loading of 
the original FCs for each neural predictor, then summa-
rized the absolute loadings for each brain node. Higher 
value indicates a stronger involvement of such node in a 
specific neural predictor? We presented the anatomical 
distribution of the top 10 most important (based on the 
absolute loading) brain regions (Fig. 3C for self-control 
mode and Fig. 3D for social interaction mode, details of 
the 10 nodes are available in eTable 4 in the supplement).  

We also presented the FC patterns with a chord dia-
gram thresholded at the top 1% according to the absolute 
loading of the FC. The FC pattern of the self-control mode 
was associated with nodes including dorsal lateral pre-
frontal cortex (DLPFC), ventrolateral prefrontal cortex 
(VLPFC), orbitofrontal cortex (OFC), inferior parietal lob-
ule (IPL), middle temporal gyrus (MTG), and superior 
temporal sulcus (STS), regions commonly implicated in 
cognitive control. [63]–[66] The FC pattern of social inter-
action mode was associated with VLPFC, medial orbito-
frontal cortex (MOFC), IPL, amygdala and thalamus, all 
of which have been implicated in emotional regulation. 
[51], [67] To aid the interpretation of the results, we fur-
ther split the FC patterns of subjects with high (top 10%) 
vs. low (lowest 10%) negative emotion scores in Time 2. 
We choose the FC pattern of DLPFC (self-control mode) 
and amygdala (social interaction mode) as examples (Fig. 
3C-D: radar map), given their wide implications and re-
ported involvement in emotional disorder. [68]–[70] 

3.6  Neural Prediction Model Generalizes Well Out-
of-samples 

To test the generalizability of the model out-of-samples, 
an external validation was performed on an independent 
dataset experienced COVID-19. The BBP-based predictive 
model were then applied to an independent validation 
sample to generate the predicted scores of their negative 

emotions. The model performance was estimated by the 
Pearson correlation between the predicted scores and ac-
tual scores (r = 0.22, p = 0.035, MAE=3.23), which con-
firmed generalizability of the model and the practical 
value of these neural markers. 

Fig. 4. Regression coefficients of the predictive model for negative 

emotions in COVID-19 and daily life. The predictive model for 

COVID-19 emphasized the self-control dimension and social inter-

action dimension, while the predictive model for daily life emphasized 

the impulsiveness dimension, childhood trauma dimension. 

Moreover, to test whether the predictive model is more 
sensitive to negative emotions in COVID-19, rather than 
daily life, COVID-based predictive model were then ap-
plied to the dataset without COVID. The results revealed 
a marginal significance between predicted scores and ac-
tual scores (r = 0.162, p = 0.087, MAE=5.24), which sup-
ported the specificity of the COVID-based predictive 
model. 

Finally, we trained a predictive model for negative 
emotions in daily life, using the same approach in BBP 
sample (see Fig. 4 and eResults 1 in the supplement). The 
predictive model worked well in this sample (r=0.44, 
p=4.4 x 10-6, MAE=4.14), but not good in BBP sample 
(r=0.05, p=0.22, MAE=6.67). In summary, the prediction 
model for negative emotions under COVID-19 demon-
strate 2 key predictors: self-control and the social interac-
tion, while in the prediction model for daily life negative 
emotions emphasized the role of impulsiveness, child-
hood trauma and coping flexibility (see Fig. 4). This might 
imply different neural basis underlying the emotional re-
sponse toward daily life stress versus COVID-19 related 
stress. 

4 DISCUSSION 

Individual’s mental health has been severely affected 
by this pandemic, [71] which implicate the urgency and 
sign ificance of exploring neural markers for negative 
emotions caused by COVID-19. The present study ad-
dressed this question by exploring the specific FC pat-
terns that predict individual’s negative emotions under 
stressful life events. We do this by applying LASSO re-
gression algorithm to a large-scale dataset.  LASSO is a 
particular case of the penalized least squares regression
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with L1-penalty function. When there is high correlation in 
the group of predictors, LASSO chooses only one among 
them and shrinks the others to zero, which contribute to 
improve the prediction accuracy and produce easily inter-
pretable models.[72] This dataset in the present is unique 
in that it contains longitudinal and multi-dimensional data 
from subject that suffering the same stressful life events 
(i.e., COVID-19). This dataset serves as a valuable resource 
for exploring neural markers of developmental course, and 
risk/protective factors for psychiatric symptom under a 
sudden public health accident.  

Based on this dataset, we have established a predictive 
neural model using psychological-meaningful FC features 
(associated with social-psychological dimensions, like self-
control, social interaction, etc.). We chose to only use these 
features because interpretability is just as important as pre-
dictivity (if not more) in real life setting. We show this 
model can predict negative emotions during COVID-19. 
We have also validated this model on an independent ex-
ternal dataset. The advantage of having a neural model is 
that it is free from subjectivity inherit in self report, and it 
does not require one to be self-aware of his own mental 
deficits. This makes it a more objective model. We hope it 
can be a useful tool for screening potential risky popula-
tion in basic mental health care.  

This model reveals two critical neural predictors for 
negative emotions under COVID-19. The first is associated 
with self-control ability, emphasizing the role of frontal 
and parietal cortex. [64], [73], [74] Items in self-control 
mode refers to the capacity to keep a healthy and disci-
plined life, which constitute the foundation of adaptive be-
haviors. [75], [76] The dysfunction of this system, mani-
fested as inefficient deployment of cognitive resources for 
flexible, adaptive responses to a changing world, were 
shown to be associated with the symptoms of various men-
tal disorders. [77]–[80] The second predictor was associ-
ated with social interaction. Consistent with previous stud-
ies, [81] our results suggested interpersonal emotion regu-
lation was another effective coping strategy: seeking sup-
port from others to deal with stress. The neural pattern as-
sociated with social interaction demonstrated a significant 
involvement of frontal-limbic system, [82]–[84] especially 
the reciprocal PFC-amygdala relationship, which were 
previously reported to be the neural mechanism underly-
ing emotion regulation. [85], [86] Abnormal FCs within this 
pattern might accompanied with deficits in emotion pro-
cessing and regulation, which ultimately result in in-
creased negative emotions under stress. Based on the 
aforementioned points, we speculate that, neural defects in 
cognitive control system and emotion regulation system 
might be the risk factors for the negative emotions under 
stress. 

Unlike COVID-based model, the predictive model for 
daily life negative emotions supported that neural predic-
tors associated with impulsiveness, childhood trauma and 
copying flexibility were important for temporary and mild 
negative emotions. However, facing with chronic and se-
vere stress during COVID-19, self-control and positive so-
cial interaction might be more effective coping strategies, 
for example, eat, sleep, work and exercise regularly,[87], 

[88] keep interactions with family and friends. [89], [90]  
The present study utilized the correlation structure be-

tween neural and psychological profiles to build a predic-
tive model with good interpretability. We note all partici-
pants in the present study were healthy subjects, and their 
risk of being infected with COVID-19 is relatively low. This 
model is therefore intended to be applicable to general 
public, but not to clinical populations. It might be informa-
tive for policymakers, and mental health practitioners for 
identifying potential risky population of emotional disor-
der during COVID-19. 
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