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Abstract

People are known for good predictions in domains they have rich experience with, such as everyday
statistics and intuitive physics. But how well can they predict for problems they lack experience with,
such as the duration of an ongoing epidemic caused by a new virus? Amid the first wave of COVID-
19 in China, we conducted an online diary study, asking each of over 400 participants to predict the
remaining duration of the epidemic, once per day for 14 days. Participants’ predictions reflected a
reasonable use of publicly available information but were meanwhile biased, subject to the influence of
negative affect and future time perspectives. Computational modeling revealed that participants neither
relied on prior distributions of epidemic durations as in inferring everyday statistics, nor on mechanistic
simulations of epidemic dynamics as in computing intuitive physics. Instead, with minimal experience,
participants’ predictions were best explained by similarity-based generalization of the temporal pattern
of epidemic statistics. In two control experiments, we further confirmed that such cognitive algorithm
is not specific to the epidemic scenario and that minimal and rich experience do lead to different
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prediction behaviors for the same observations. We conclude that people generalize patterns in recent
history to predict the future under minimal experience.

Keywords: Prediction; Bayesian inference; Function learning; Crowd wisdom; Folk epidemiology;
COVID-19

1. Introduction

Predicting the future is an ability that everyone dreams of and, in some sense, we do have.
For example, when people are asked to predict everyday statistics such as the expected life
span of a man of 90 years old or the total box office of a movie that has grossed 10 million
dollars, their predictions are strikingly consistent with the real-world statistics, at least on
the group level (Griffiths & Tenenbaum, 2006, 2011; Mozer, Pashler, & Homaei, 2008). It is
as if they use Bayesian inference to solve the prediction problem (Griffiths & Tenenbaum,
2006), combining the current observation of a quantity (e.g., 90 years old) with their prior
knowledge of its probability distribution (e.g., the life-span distribution of the population). A
second class of prediction problems in the literature of human cognition1 is known as intuitive
physics (Kubricht, Holyoak, & Lu, 2017). It is found that people can accurately predict the
future status of physical events that evolve with time (Hamrick, Battaglia, Griffiths, & Tenen-
baum, 2016; Kubricht et al., 2017), such as the trajectory of a freely falling object, as if they
could simulate ongoing dynamics based on appropriate physical laws (Battaglia, Hamrick, &
Tenenbaum, 2013; Hamrick et al., 2016; Smith, Battaglia, & Vul, 2018). Everyday statistics
and intuitive physics represent two classes of prediction problems associated with different
levels of theories (see Fig. 1): The former relies on descriptive theories that directly char-

Fig. 1. Three classes of representative prediction problems in human cognition.

Note. The three classes of problems differ in two dimensions: whether people have mechanistic, descriptive, or
minimal theories about the problem (“level of theory”), and whether the uncertainty associated with the problem
is low or high (“uncertainty”).
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acterize the distribution of similar quantities (e.g., life spans of other individuals), while the
latter on mechanistic theories of how the quantity in question (e.g., trajectory) is controlled
by other quantities (e.g., velocity and acceleration). Despite these differences, both belong to
problems people have rich experience with.

Here, we focus on a third class of prediction problems: those that people have minimal
experience with, such as the dynamics of an ongoing epidemic caused by a new virus. The
outbreak of the COVID-19 pandemic has reminded us of the real-life importance of such pre-
dictions. Scientists all around the world have been developing mathematical models to predict
the progress of the pandemic (Dehning et al., 2020; Maier & Brockmann, 2020), which can
help governments to respond proactively and better balance the costs and benefits of interven-
tion policies, such as school closures and traveling restrictions (Flaxman et al., 2020; Hsiang
et al., 2020). Common people’s predictions, though less publicized in the media, may also sig-
nificantly change the trajectory of the pandemic, through both the public’s opinions (Burstein,
2003) and individuals’ conformity with the recommended protective behaviors, such as face-
mask wearing and social distancing (Rubin, Amlot, Page, & Wessely, 2009). Previous studies
on folk epidemiology only tested people’s medical knowledge about infectious diseases, such
as the estimation of disease prevalence (Kalichman & Cain, 2005) or the understanding of
disease causality (Au et al., 2008; Legare, Evans, Rosengren, & Harris, 2012; Sigelman &
Glaser, 2019). It is largely unknown how people may use available information to predict the
dynamics of an ongoing epidemic.

Due to its distinctive characteristics, the prediction of epidemic dynamics likely requires
different cognitive computations from those of everyday statistics and intuitive physics. On
one hand, because pandemics or even large-scale epidemics were not common in one’s life-
time, most people may not be able to base their predictions on experienced distributions
of similar quantities, as they do for everyday statistics. On the other hand, predicting the
spread of a new infectious disease can be much more difficult than predicting physical events,
despite that both involve dynamic processes. This difficulty arises not only from people’s
limited experience with the disease, but also from the higher uncertainty associated with dis-
ease transmission than with physical events. Both environmental factors (Merow & Urban,
2020) and human behaviors (Flaxman et al., 2020; Hsiang et al., 2020) add uncertainty to the
spread of the disease. Even for mathematical models that are designed to forecast the trend of
COVID-19 (Bertozzi, Franco, Mohler, Short, & Sledge, 2020; Dehning et al., 2020; Estrada,
2020; Maier & Brockmann, 2020), the complexity of influencing factors remains a challenge.
It is thus reasonable if people use more heuristic computations instead of computing epidemic
dynamics as they do for intuitive physics.

The unfortunate outbreak of COVID-19 provides us a real-life situation to test human pre-
dictions of epidemic dynamics. During February and March 2020, when COVID-19 had not
developed into a global pandemic but was mainly reported as an epidemic outbreak in China,
we recruited over 400 Chinese adults online to participate in a daily survey study, where each
participant reported their predictions for the remaining duration of the epidemic (i.e., until
when the number of daily new cases in China comes back to zero), once per day for 14 days.
They were also assessed on a range of psychological traits and states. Different from many
laboratory prediction tasks (Quiroga, Schulz, Speekenbrink, & Harvey, 2018), our survey did
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not supply any epidemic statistics or suggest which information should be relevant. That is,
participants faced a genuine real-world problem and were free to use whatever information
they possessed to make predictions.

To understand the cognitive computations underlying participants’ predictions, we con-
structed four computational models and compared their goodness-of-fit to human data. The
first model implements the Bayesian inference used for everyday statistics, combining the
number of elapsed days with a prior distribution of epidemic durations (Griffiths & Tenen-
baum, 2006). The second model is analogous to the dynamics computation in intuitive
physics, which mimics the modeling of dynamics in a state-of-the-art mathematical model
of epidemics (Maier & Brockmann, 2020). Alternative to building an internal model to sim-
ulate the dynamics of epidemics, people may adopt a heuristic approach that is more eco-
nomical in computation, focusing on the historical trend of the epidemic statistic in question
to predict its trend in the future. Learning and generalization like this is known as function
learning, through which people can learn from limited instances and generalize the observed
input-output mapping to unlearned inputs (DeLosh, Busemeyer, & McDaniel, 1997; Lucas,
Griffiths, Williams, & Kalish, 2015; Schulz, Tenenbaum, Duvenaud, Speekenbrink, & Gersh-
man, 2017). The third and fourth models, respectively, implement rule-based and similarity-
based (also known as parametric and nonparametric) function learning algorithms. For rule-
based function learning, the observer expects the observed epidemic statistic to change with
time following a specific bell-shaped functional form and predicts the future by estimating
the parameter(s) of this function. For similarity-based function learning, the observer has no
assumption about the functional form of the trend and predicts the future as the weighted
average of previous observations, with observations from farther past carrying smaller
weights.

We also performed two control experiments using a cover story that is irrelevant to disease,
to exclude the possibility that our findings in the survey study were specific to the epidemic
scenario or the particular trend of observations, and to further compare human prediction
behaviors under rich and minimal experiences.

2. Methods

2.1. Participants and survey administration

The study was part of a collaborative project of multiple labs in Peking University and
Beijing Normal University. It was conducted during the first wave of COVID-19 in China,
when the cases outside China were still few (Fu et al., 2021; Li, Lai, Gao, & Shi, 2021).
Via the online survey software Qualtrics, we administered four rounds of surveys, which
started on February 6, February 10, February 17, and February 29 in 2020. Participants were
Chinese-speaking adults who were located in China, recruited through the I-love-experiments
platform (http://aishiyan.bnu.edu.cn/), an online participant pool maintained by Beijing Nor-
mal University. The study had been approved by the Institutional Review Boards of School
of Psychological and Cognitive Sciences at Peking University and Faculty of Psychology at
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Beijing Normal University. All participants provided informed consent online. Participants
were compensated for their time, receiving 10 RMB for a baseline assessment and 2 RMB
for each valid daily entry.

Each round of surveys consisted of a 30-min baseline assessment performed on the initial
test and a 5-min daily survey (i.e., diary) administered on 14 consecutive days. Each partici-
pant only took one round of surveys. During the baseline assessment, demographic informa-
tion was collected, all items in the daily survey were administered, and a series of personal
traits and emotional states were assessed. After the baseline assessment, participants who
volunteered to participate in the following 14-day daily surveys and also met the inclusion
criteria (passing the attention check and rationality check, see Baseline Assessment and Daily
Measures for details) were registered into the daily survey program. On each day, participants
must fill in the survey between 6:00 p.m. and 11:59 p.m., so that the epidemic statistics (new
cases, recoveries, and deaths, etc.) for the previous day had been reported in the media. To
help participants complete the survey on time, experimenters provided daily reminders for
each participant. We also controlled the settings of Qualtrics to ensure that the survey was
accessible only within the required time range.

We intended to maximize the sample size within our budget limit and recruited every
adult volunteer who responded to our advertisement to participate in the baseline assessment.
Among the 1039 participants who completed the baseline assessment, 223 participants failed
the attention check or rationality check. In the remaining 816 participants, 420 participants
volunteered to participate in the 14-day daily surveys. They missed 113 and completed 5767
daily survey entries, among which 228 entries (3.95%) were excluded for failing the rational-
ity check or taking more than 3 h to complete. Two participants failed the rationality check
for all their entries. The final sample for the current analysis thus included 5539 daily surveys
from 418 participants (aged 18–50, mean = 24.1, 80.5% female, see Fig. S3 for the number
of participants on each calendar date).

2.2. Baseline assessment

Baseline assessment includes demographic information and 11 self-report psychological
scales. Among them, three scales measure the levels of negative affect, including depres-
sion, anxiety, and stress: Depression Anxiety Stress Scales-21 (DASS-21; Taouk, Lovibond,
& Laube, 2001), Perceived Stress Scale (PSS; Chu & Kao, 2005; Cohen, Kamarck, & Mer-
melstein, 1983), and Trait Anxiety Inventory (T-AI; Spielberger et al., 1983; Wang, Wang,
& Ma, 1999; Zheng et al., 1993). The Future Time Perspective Scale (FTP scale; Carstensen
& Lang, 1996) measures the perspective toward the future. Please see the Supplement for
more details and a full list of all the scales. Scales were administered in a simplified Chinese
version. Three additional instructed choices (e.g., “Please select very unlikely for the current
question”) were implanted among the scales to serve as attention checks.

2.3. Daily measures: Predicting the duration of the epidemic

In February 2020, COVID-19 was known as an ongoing epidemic in China instead of a
pandemic. At that time, many Chinese people, including the authors, had expected it to end
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soon, similar to the SARS epidemic in 2003. Participants were required to predict the number
of days it would take before the daily new cases of COVID-19 in China went to zero. In
particular, four questions were presented in the following order: (1) “After how many days at
least do you think there will be no more daily new cases in our country?” (i.e., the minimum
duration in their own belief); (2) “After how many days at most do you think there will be
no more daily new cases in our country?” (i.e., the maximum duration in their own belief);
(3) “What do you think this duration (in days) is most likely to be?” (i.e., the most possible
duration in their own belief); and (4) “What do you think most people’s prediction for this
duration will be?” (i.e., the most likely duration in others’ belief). Participants answered each
question by typing in a non-negative number for days. We used this free inputting format
instead of forced choices or the Likert scale to avoid any anchoring effects.

Answers to the first three questions were used as a rationality check that requires the mini-
mum ≤ the most possible ≤ the maximum. Participants’ predictions were added by one and
then log-transformed for further analysis. Unless otherwise noted, our further analysis of the
duration prediction focused on the “most likely” duration.

2.4. COVID-19 epidemic statistics

The epidemic statistics of COVID-19 used in our analyses (daily new cases, cumulative
cases, etc.) came from the National Health Commission (NHC) of the People’s Republic of
China (http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml).

We did not provide these COVID-19 data to participants in our survey but expected par-
ticipants to have access to the information themselves from everyday news. NHC published
daily COVID-19 reports with a delay of 1 day (e.g., NHC published February 9’s data on
the morning of February 10). Therefore, the latest COVID-19 data participants could access
when filling in the daily surveys were from the previous day.

The daily new cases could be divided into local new cases and imported new cases. We
used local new cases alone to define the ground truth of the zero-case day. In regression and
modeling analyses, we used the total new cases (i.e., local + imported).

2.5. Modeling the prediction of epidemic duration

To understand the cognitive process behind participants’ predictions of the epidemic dura-
tion, we formulized the three types of computations described in the Introduction into four
computational models—the duration-prior model, the epidemiologist model, the rule-based
function learning model, and the similarity-based function learning model—and compared
their goodness-of-fit to human behavior (see Fig. 3A for an illustration). Below, we specify
the assumptions of each of these models from three aspects: the observer’s belief of how the
observed epidemic statistics are generated (“generative model”), how the observer infers the
latent parameters or variables in the generative model (“inference”), and how the observer
uses the fitted generative model to predict the future (“prediction”). Please also see Table S2
for a summary of the free parameters for each model.
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2.5.1. Duration-prior model
In the duration-prior model, we consider an observer with some prior beliefs about the

distribution of the epidemic’s durations. To predict the future, the observer combines the
prior distribution with the actual duration that has elapsed since the epidemic onset following
Bayesian inference (Griffiths & Tenenbaum, 2006, 2011). Griffiths and Tenenbaum (2011)
used the Erlang distribution to approximate human prior for the duration of daily events,
because it “provides a simple way to summarize many of the kinds of distributions that
might be encountered across temporal domains” (Griffiths & Tenenbaum, 2011, p. 5). In a
similar rational, here we chose the gamma distribution—a generalized form of the Erlang
distribution—as the prior belief in the duration-prior model. Following previous studies on
the prediction of everyday statistics (Griffiths & Tenenbaum, 2006, 2011), we fit the parame-
ters of the prior distribution as free parameters.

Generative model: We assume that the observer’s prior belief for the epidemic’s total
duration ttotal follows a Gamma distribution:

ttotal ∼ Gamma (a, b) , (1)

where a > 1 controls the shape, and b > 0 controls the scale. After a specific dura-
tion telapsed, when the duration has not ended, the likelihood function for ttotal equals
p (ttotal ≥ telapsed|ttotal ) = 1 for all ttotal ≥ telapsed, and 0 otherwise.

Inference: Given the duration’s prior and the likelihood function, the poster estimation of
the epidemic duration ttotal can be inferred:

p
(
ttotal|ttotal ≥ telapsed

) = p
(
ttotal ≥ telapsed|ttotal

)
p (ttotal )

∫ p
(
ttotal ≥ telapsed|ttotal

)
p (ttotal ) dttotal

, (2)

which yields

p
(
ttotal|ttotal ≥ telapsed

) = f (ttotal, a, b)

1 − F
(
telapsed, a, b

) , (3)

where f (t, a, b) and F (t, a, b), respectively, denote the probability density function and
cumulative distribution function of Gamma(a, b).

Prediction: Following Griffiths and Tenenbaum (2006, 2011), the Bayesian observer cal-
culates the posterior median t̂total of the epidemic duration ttotal given the number of elapsed
days telapsed. On the test day ttest, we assume that the elapsed days according to the observer’s
memory is telapsed = ttest + t0, where t0 is a free parameter reflecting the observer’s estimation
of the number of epidemic days before the survey. We assume that the observer’s estima-
tion of the remaining duration of the epidemic, Dend, is further contaminated by an additional
Gaussian noise εD ∼ N(0, σ 2

est ) on the logarithmic scale:

ln (Dend) = ln
(
t̂total − ttest − t0 + 1

) + εD, (4)
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In total, the duration-prior model has four free parameters: Gamma distribution prior
parameters a and b, memory reference point t0, and estimation noise σ 2

est.

2.5.2. Epidemiologist model
Consider an observer who is armed with epidemiological knowledge and uses this knowl-

edge to model the dynamics of disease transmission. To implement this “epidemiologist”
observer, we adapted a Susceptible-Infected-Recovered (SIR) model recently published in
Science (the SIR-X model; Maier & Brockmann, 2020), which successfully captures the
effects of the Chinese government’s containment and quarantine procedures. By modeling
not only the effects of the containment procedure influencing almost everyone but also those
of the quarantine procedure removing only the symptomatic infected individuals, the SIR-X
model can predict the subexponential growth of the infected population observed in China
that violates the predictions of other state-of-the-art SIR models (e.g., Dehning et al., 2020).

Generative model: The observer believes that from day t to day t + 1, the number of
susceptible individuals (S), the number of infected individuals who have not been identified
and thus are not quarantined (I ), the number of individuals who are permanently removed
from the susceptible or unquarantined infected due to recovery or containment procedures
(R), and the cumulative number of quarantined infected individuals (X), respectively, undergo
changes:

St+1 − St = −β
It St

N
− κ0St , (5)

It+1 − It = β
It St

N
− (γ + κ0 + κ ) It , (6)

Rt+1 − Rt = γ It + κ0St , (7)

Xt+1 − Xt = (κ0 + κ ) It . (8)

Here, N = St + It + Rt + Xt is the total population, β is the transmission rate that controls
the spread of the disease from the infected to the susceptible, γ is the recovery rate of the
infected, κ0 is the general containment rate that affects both the susceptible and infected
populations, and κ captures the effects of the policies such as quarantine measures that only
affect the infected.

Inference: Among the four series of variables (S, I , R, and X), only X is observable
through the reported cumulative cases. Following the original paper of this SIR-X model
(Maier & Brockmann, 2020), we set β = 0.775 and γ = 0.125. We assume that the
observer infers the values of the epidemic parameters κ0, κ and the initial status I0 from the
time series of daily epidemic statistics (cumulative cases, or equivalently, daily new cases) so
that the mean squared errors between the observed and predicted time series of X are mini-
mized.
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Prediction: On the test day ttest, the observer can compute a prediction of epidemic statis-
tics (S, I, R, X) for any future day τ > ttest based on Eqs. 5–8, with the difference equations
starting from the first day when daily epidemic statistics were publicly available (January 21,
2020) and the epidemic parameters estimated using the statistics up to day ttest − 1.

The ending day tend of the epidemic is defined as the first day when the expected number
of new cases is less than a logarithmic threshold θ . That is, tend ≥ ttest and satisfies:

ln (Xt − Xt−1) ≥ θ, ∀t ∈ {1, 2, . . . , tend − 1} ; (9)

ln
(
Xtend − Xtend−1

)
< θ. (10)

We assume that the observer’s estimation of the remaining duration of the epidemic, Dend,
is further contaminated by an additional Gaussian noise εD ∼ N(0, σ 2

est ) on the logarithmic
scale:

ln(Dend ) = ln(tend − ttest + 1) + εD. (11)

In total, the epidemiologist model has two free parameters to be estimated from partici-
pants’ predictions: zero-case threshold θ and estimation noise σ 2

est.

2.5.3. Similarity-based function learning model
Different from an epidemiologist observer who bases on an internal model to compute

the dynamics of disease transmission, people may have limited knowledge to guide their
prediction, except for the epidemic statistics reported in the news. A more knowledge-free
way to predict the future is to use similarity-based function learning: The closer the two dates
are, the more similar their number of new cases will be. In other words, the case number at a
future time point is expected to depend on past observations of case numbers, with the impact
of past observations decaying with time. Formally, the similarity-based function learning can
be implemented by the Gaussian process regression (Rasmussen & Williams, 2005) with a
radial basis function (RBF) kernel (Stojic, Schulz, Analytis, & Speekenbrink, 2020). With
an RBF kernel, the similarity-based function learning model hypothesizes that with no more
cases observed, the cases in the future would drop to a certain level and the epidemic would
finally stop (i.e., the prior mean is 0).

Generative model: From the perspective of function learning, to predict the future growth
of COVID-19 is to learn from the observed data patterns of daily new cases and generalize
the pattern to future time points. Consider an arbitrary series of days T = [t0, t1, . . . , tn]�,
where ti and ti+1 are not necessarily adjacent days. The observer assumes that the logarithm of
the true number of daily new cases on these days, f (T ), is generated from a Gaussian process,
that is, a multivariate Gaussian prior distribution with zero mean and covariance k(T , T�):

f (T ) ∼ N

⎛
⎜⎝0,

⎡
⎢⎣

k (t0, t0) · · · k (t0, tn)
...

. . .
...

k (tn, t0) · · · k (tn, tn)

⎤
⎥⎦
⎞
⎟⎠ , (12)
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where k(ti, t j ) is the kernel function that characterizes the covariance between 2 days ti and
t j . Here, in the similarity-based model, we have:

k
(
ti, t j

) = exp

(
−
∣∣ti − t j

∣∣2
2λ2

)
, (13)

where λ is the length-scale that controls how the similarity (or correlation) decays with the
distance between inputs (i.e., the time interval between dates). The observer also assumes
that the observed number of daily new cases on any specific day, Yt , is contaminated by an
additional Gaussian noise εt ∼ N (0, σ 2

obs):

Yt = f (t ) + εt . (14)

Practically, Yt is the daily new cases reported in the news (equivalent to the Xt − Xt−1

above), while f (t ) is the true daily new cases that are unobservable.

Inference and prediction: On the test day ttest, the observer has access to the reported daily
new cases up to day ttest − 1. Denote the series of days from day 0 to day ttest − 1 by Ttest =
[0, 1, . . . , ttest − 1]� and its reported daily new cases by Ytest = [Y0,Y1, . . . ,Yttest−1]�. We

assume that the observer would predict the daily new cases f (τ ) on any specific future day
τ > ttest using Bayesian inference. In terms of Gaussian process regression, this is equivalent
to first computing the joint distribution

[
Ytest

f (τ )

]
∼ N

(
0,

[
k (Ttest, Ttest ) + σ 2

obsI k (Ttest, τ )
k (τ, Ttest ) k (τ, τ )

] )
, (15)

and then marginalizing off Ytest to obtain the posterior f (τ )|Ytest, Ttest, which follows a Gaus-
sian distribution.

The report of epidemic duration is elicited from the posterior mean function of daily new
cases (i.e., the mean of f (τ )|Ytest, Ttest as a function of τ ) in the same way as in the epidemi-
ologist model.

In total, the similarity-based function learning model has four free parameters: length-scale
λ, observation noise σ 2

obs, zero-case threshold θ , and estimation noise σ 2
est.

2.5.4. Rule-based function learning model
As an alternative type of function learning, an observer who follows rule-based function

learning would fit a specific parametric family to the observed time series of daily new cases
and use the fitted function to predict the future. In particular, the observer believes that the
number of daily new cases first increases to a “turning point” and then gradually decreases
to zero. Similar to the similarity-based function learning model, the observer’s inference and
prediction of the rule-based model is implemented by the Gaussian process regression, though
with a different kernel.
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Generative model: The observer’s prior belief is formulized as a quadratic function on
the logarithmic scale and implemented by a Gaussian process with a quadratic kernel:

k
(
T , T ′) = (

γ T�T ′ + c0
)2

, (16)

where γ is the scale parameter and c0 is the offset parameter. A quadratic function on the
logarithmic scale corresponds to a bell-shaped curve on the linear scale, which agrees with
the dynamics that emerge from SIR models.

Inference and prediction: The inference and prediction of the rule-based model follow
the Gaussian process described above for the similarity-based model.

In total, the rule-based function learning model has five free parameters: scale parameter γ ,
offset parameter c0, observation noise σ 2

obs, zero-case threshold θ , and estimation noise σ 2
est.

2.6. Model fitting and comparison

We averaged the duration predictions across participants separately for each test day and
fit each model to these aggregated duration predictions using maximum likelihood estimates.
The Akaike Information Criterion (AIC; Akaike, 1974) was used to compare the goodness-
of-fit of different models. For each model, 
AIC was calculated as the difference between
the AIC of the model and the minimum AIC among all four models. AIC weight, a measure
that reflects the relative likelihood of a specific model to outperform the other models, was

computed for each model as
exp(− 1

2 
AICthe )∑
j exp(− 1

2 
AICj )
, where 
AICthe denotes the 
AIC of the model

and 
AICj denotes the 
AIC of model j, with j enumerating all the four models (Burnham
& Anderson, 2002).

As a second metric for model comparison, we also performed a five-fold cross-validation
as follows. We split the 40-day daily surveys into five subsets of 8 days. The first and last days
were omitted for small sample sizes, so that the first and last subsets only included 7 days.
For each model, each time one of the five subsets served as the test set and the remaining four
subsets as the training set. The summed log-likelihood across five test sets was used as the
goodness-of-fit metric for model comparison. Model fitting was implemented in Python 3.8
with the constrNMPy (v0.1) package. The optimization process was repeated for 1000 times
with random starting points to ensure the convergence of the negative log-likelihood to the
global minimum.

2.7. Statistical analysis

2.7.1. Linear mixed-effects models
We performed a series of linear mixed-effects models (LMMs) to see (1) which epidemic

statistic best predicted participants’ duration predictions; (2) how a participant’s DASS and
FTP scores may modulate the participant’s duration prediction; and (3) the participant’s
duration prediction “pessimistic-me bias” (defined in Results). Please see the Supplement
for a full description of the LMMs. All data were transformed to z-score for regression. All
LMM analyses were implemented in python3.8 with the statsmodels (v0.13.1) package.
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2.7.2. Correction for multiple comparisons
To avoid the inflation of Type I errors due to multiple comparisons, we performed the false

discovery rate (FDR) correction in our analysis, using the fdrcorrection function in the Python
package statsmodels.

3. Results

3.1. Behavioral signatures in human predictions of epidemic durations

The daily new cases included local new cases and imported new cases. Given that the latter
was unexpected at the beginning of our study (February 6, 2020), we defined the first day
when the local new cases became zero as the ground truth of the zero-case day, which was
March 18, 2020.

We first examined all 418 participants as a collective mind, averaging their duration pre-
dictions separately for each test day (diary date) and contrasting them with the ground truth
(Fig. 2A). Across the test period of 40 days, the aggregated predictions for epidemic durations
ranged from 24 to 42 days, which on average were significantly greater than the ground-truth
durations (Wilcoxon signed-rank test, Z = 5.22, p < .001) by 12.5 days.

On one hand, participants’ predictions were reasonable: The predicted durations had an
overall decreasing trend as days elapsed (linear regression, slope β = −0.247, 95% CI
[−0.270, −0.223], p < .001). On the other hand, the decrease was not fast enough to con-
verge to a specific date. In contrast, the SIR-based models used by epidemiologists (e.g., the
SIR-X model) would predict the duration to converge as the infective population decreased
to zero or a stable endemic level (Allen, 1994). The zero-case day implied from participants’
duration predictions had a tendency to extend to a farther and farther future (linear regression,
slope β = 0.230, 95% CI [0.208, 0.253], p < .001), which we call the “postpone-again bias.”
This bias existed even during the first 27 test days when no imported cases had been reported
(linear regression, slope β = 0.348, CI [0.315, 0.380], p < .001). That is, the bias was not
simply because participants changed their minds after knowing of the possibility of imported
cases.

Because no epidemic statistics were presented in our daily survey, participants could only
use the epidemic statistics (up to yesterday) that were available in the news, which included
daily new cases (local + imported), cumulative cases, total active cases, daily deaths, cumu-
lative deaths, daily recoveries, and cumulative recoveries. Among these statistics, if we only
consider one single statistic from yesterday, it would be the daily new cases (see Fig. S1) that
correlated most with the duration predictions of an ideal observer following a state-of-the-art
mathematical model of epidemics (Maier & Brockmann, 2020). Did participants’ predictions
reflect a similar highest contribution from the daily new cases?

Given the high correlations between the statistics (see Fig. S4), we entered different epi-
demic statistics from yesterday into separate LMMs (see Supplemental Methods) as predic-
tors for participants’ epidemic durations. We then compared the resulting goodness-of-fit of
different models to see which statistic contributed most. To rule out the possibility that the
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(a) (b)

Fig. 2. Behavioral signatures in human predictions of epidemic durations.

Note. Panel A: Daily new cases and predicted epidemic durations for each day. The test period of our diary
program ranged from February 6, 2020 to March 16, 2020 (Data from the first and last days were omitted due
to small sample sizes). Gray curves denote the daily new cases for each date in Mainland China (reported by the
National Health Commission of China), with darker gray for local new cases and lighter gray for total new cases
(i.e., local + imported), both shown in logarithmic scale. Each horizontal gray line denotes the predicted “most
likely” duration on a specific test day (i.e., diary date), averaged across participants. The green rectangle at its
left end denotes the diary date. The green circle at its right end denotes the implied zero-case date (i.e., diary
date + predicted duration). Throughout the test period, participants’ duration predictions had a “postpone-again
bias”: the implied zero-case date extended to farther and farther future instead of converging to a specific date.
Panel B: Comparison of different epidemic statistics as linear predictors for participant’s duration predictions.
New–1, Cumulated–1, NewDeath–1, Death–1, NewRec–1, Rec–1, and Active–1, respectively, denote yesterday’s new
cases, cumulative cases, daily deaths, daily recoveries, cumulative recoveries, and total active cases, which were
the latest epidemic statistics participants could access on the test day. New denotes today’s new cases, which was
inaccessible and served as a control test. Each of these variables was entered into a separate linear mixed-effects
model as predictors for participants’ duration predictions. Smaller 
AIC indicates better fits. Yesterday’s new
cases best predicted participants’ duration predictions.

observed influence of daily new cases on participants’ duration predictions might be an arti-
fact reflecting their common decreasing trend, we also included a control model with today’s
new cases (i.e., information unavailable at test) as the predictor. According to the metric of
goodness-of-fit, 
AIC (the lower the better), the regression model that best fit participants’
epidemic durations was the one with yesterday’s new cases as the predictor (see Fig. 2B),
whose relative likelihood to outperform all the other regression models (i.e., AIC weight,
Burnham & Anderson, 2002) was over 99.9%. Consistent with one might expect from the
ideal observer, the more numerous yesterday’s new cases, the longer participants’ duration
predictions (main effect β = 0.075, 95% CI [0.046, 0.104], p < .001). This influence was
even stronger in each participant’s later than earlier test days (interaction with diary number,
β = 0.037, 95% CI [0.022, 0.051], p < .001).
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3.2. Human predictions are based on similarity-based function learning

How did participants then use the information of daily new cases to compute their predic-
tions of the epidemic duration? We tested four computational models that differ in the level
of theory that the observer’s prediction process is based on (see Fig. 3A). That is, whether
the observer infers from descriptive prior beliefs of duration distributions (the duration-prior
model), uses a mechanistic internal model to simulate epidemic dynamics (the epidemiolo-
gist model), or generalizes patterns from past observations in a more theory-free way (two
function learning models), and in the final case, whether the generalization is rule-based (the
rule-FL model) or similarity-based (the similarity-FL model). We fit each model to partici-
pants’ duration predictions for each test day using maximum likelihood estimates. AIC and
cross-validated log-likelihood were used as the metrics of goodness-of-fit for model compar-
isons. According to both metrics, similarity-FL was the best-fitting model (see Fig. 3C and
Fig. S2). The relative likelihood of similarity-FL outperforming the other three models (i.e.,
AIC weight) was over 99.9%.

A comparison between data and model fits (see Fig. 3B) shows how the other three models
fit worse to the data. Among them, the epidemiologist model’s duration predictions decreased
much faster with time than participants’ duration predictions did. As time elapsed, the epi-
demiologist model’s prediction for the zero-case day effectively converged to a specific date,
which deviated from the ever-postponing zero-case dates in participants’ predictions (i.e., the
postpone-again bias in Fig. 2A).

The major failure of the duration-prior model was its inability to capture the epidemic-
related fluctuations in participants’ predictions. Because the model only took into account
a prior distribution of durations and the number of elapsed days since epidemic onset, its
predictions would not be subject to the same influence of epidemic statistics as in the human
data (see Fig. 2B).

The differences between the two function learning models (rule-RL and similarity-RL)
were more subtle. Following a sharp decrease for a few days, the daily new cases entered
a relatively stable period from February 19 to February 29. It was during this period that
rule-RL had a remarkable under-shoot of participants’ duration predictions, probably because
according to the rule, the daily new cases would continue decreasing once starting to decrease.
In contrast, the similarity-RL model, which had minimal assumptions about the temporal
pattern of daily new cases, closely matched the human data all way through.

3.3. Psychological traits or states that influence individuals’ predictions

The analyses above focused on participants’ collective performance in epidemic predic-
tions. Now, we turn to their individual differences, first screening the psychological traits or
states that may correlate with individuals’ duration predictions.

Among the 19 baseline measures of psychological traits or states (including subscales, see
Table S1), after FDR correction for multiple comparisons, only two measures were signifi-
cantly correlated with individuals’ mean duration predictions (averaged across each partici-
pant’s 14 test days): negative affect (DASS, Pearson’s r = .141, 95% CI [0.046, 0.234], FDR
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Fig. 3. Comparison of four computational models.

Note. Panel A: Illustration of the assumptions of the four models. The duration-prior model combines the number
of elapsed days with a prior distribution of epidemic durations following Bayesian inference. The other three
models rely on the same time series of daily new cases to predict the remaining duration of the epidemic but differ
in the computations involved. The epidemiologist model assumes an observer who computes the dynamics of
disease transmission similar to what epidemiologists do. The rule-FL and similarity-FL models are both observers
who learn the trend of daily new cases (i.e., function learning) but differ in whether a specific functional form is
assumed for the trend (rule-FL) or the generalization is simply similarity-based (similarity-FL). See text. Panel B:
Data versus model fits for the duration predictions. All 418 participants were treated as a collective mind, with
their duration predictions averaged separately for each diary date. Shadings for the data denote 95% CI. Panel C:
Model comparison results. Smaller 
AIC indicates better fits. Among the three models, the similarity-FL model
fit best to participants’ duration predictions.
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(a) (b)

(c) (d)

Fig. 4. Effects of negative affect and future time perspectives.

Note. Panel A, B: The duration predictions of participants with lower versus higher negative affect (lower vs.
higher DASS scores). Panel C, D: The duration predictions of participants with limited versus extended future
time perspectives (lower vs. higher FTP scores). Duration predictions are plotted against diary number (A, C) or
diary date (B, D). Shadings denote 95% CI. See text for the statistical differences in the left panels.

corrected p = .037) and the perspectives of future time (FTP, Pearson’s r = −.154, 95% CI
[−0.246, −0.059], FDR corrected p = .030).

Next, we used linear mixed-effects regression (see Supplemental Methods) for individuals’
predictions to further investigate the main effects of DASS and FTP scores as well as their
interactions with daily new cases and the diary number (out of the individual’s 14-day test
period). The effects of daily new cases and diary numbers themselves were consistent with
our results for the group data. That is, the more numerous yesterday’s new cases, the longer
individual participants’ duration predictions (β = 0.075, 95% CI [0.044, 0.106], p < .001)
and this influence was stronger for later diary number (interaction: β = 0.035, 95% CI [0.020,
0.051], p < .001). Individuals’ duration predictions also decreased with diary number (β =
−0.069, 95% CI [−0.094, −0.044], p < .001).

DASS and FTP had different effects on individuals’ predictions. DASS had a significant
interaction with diary number (β = 0.035, 95% CI [0.008, 0.062], p = .011) but a lack of
significant main effect (β = 0.099, 95% CI [−0.003, 0.201], p = .057). As Fig. 4A shows,
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DASS scores modulated how fast the individual’s duration predictions decreased with diary
number: Those with higher negative affect (i.e., higher DASS scores) decreased their duration
predictions more slowly with time. In contrast, FTP scores had a significant main effect (β =
−0.104, 95% CI [−0.202, −0.006], p = .037). As Fig. 4C shows, participants with a more
limited perspective for the future (i.e., lower FTP scores) predicted the epidemic to last longer.
The interaction effect of DASS and the main effect of FTP were also visible in the plots of
participants’ duration predictions as a function of diary date, separately for participants with
lower and higher DASS (see Fig. 4B) or FTP (see Fig. 4D).

3.4. Individual differences in the change of predictions over time

We have shown that psychological traits or states might influence not only an individual’s
mean prediction, but also how the individual’s prediction changes over the 14-day test period.
Next, we look further into such changes, focusing on individual differences in possible non-
monotonic changes.

For each participant, we fit a quadratic function to the normalized time series of the dura-
tion predictions and used the two fitted parameters to describe the temporal pattern of the
participant’s duration predictions (see Supplemental Methods): trend index a1 (increasing or
decreasing), and shape index a2 (U-shaped or inverted-U-shaped). Among the 412 partici-
pants who had at least 8 days of valid diary data, the overall trend was decreasing for 67%
participants and increasing for 33% participants; the overall shape was U-shaped for 45%
participants and inverted-U-shaped for 55% participants.

We computed the correlations between the two parameters and the 19 psychological traits
or states measured in the baseline assessment (with FDR correction for 2 × 19 comparisons).
Consistent with DASS’s effects described earlier (see Fig. 4A), we found that the trend index
a1 had small but statistically significant positive correlations with DASS (Pearson’s r = .228,
95% CI [0.134, 0.318], FDR corrected p < .001). Similar correlations were also found for two
other measures of negative affect: the perceived stress (PSS) and trait anxiety (T-AI; Pearson’s
r = .175, 95% CI [0.079, 0.268], FDR corrected p = .007; r = .157, 95% CI [0.061, 0.251],
FDR corrected p = .018, respectively). None of the correlations with the shape index a2

passed the FDR correction for significance. In brief, consistent with our regression analysis
above, the more negative an individual’s affect was, the more likely the individual’s duration
prediction would increase with time.

3.5. The “pessimistic-me bias” in predicting epidemic duration

Apart from reporting the epidemic duration they themselves considered to be most likely,
participants also estimated how most people would predict the duration. The differences
between the former and the latter are shown in Fig. 5A. According to a Wilcoxon signed-rank
test on each participant’s difference (averaged over their 14 days test period), participants’
estimation of their own “most likely” predictions was significantly longer than “most peo-
ple’s predictions” (Z = 3.12, p = .002). That is, participants expected themselves to be more
pessimistic than others.
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(a) (b)

Fig. 5. The pessimistic-me bias.

Note. Panel A: The pessimistic-me bias. The difference between participants’ estimation of their own “most likely”
predictions and “most people’s predictions” is plotted for each diary date. Black line stands for the mean prediction
differences, shadings denote 95% CI. Panel B: Effects of diary number DN, yesterday’s new cases New−1, indi-
vidual DASS and FTP on the “pessimistic me” bias. β is the standardized coefficient of the linear mixed-effects
model. Error bars represent 95% CI of the coefficients. Participants with higher negative affect were aware of their
pessimism, while participants with more extended future time perspectives were not aware of their optimism. *p
< .05. **p < .01. ***p < .001.

We also tested how this pessimistic-me bias (the difference between predictions of “most
likely” and “most people’s”) might covary with the individual’s DASS or FTP scores. Accord-
ing to linear mixed-effects regression (see Supplemental Methods and Fig. 5B), the magnitude
of the bias increased with DASS (β = 0.13, 95% CI [0.046, 0.215], p = .003). That is, to a
greater extent did participants with higher negative affect expect their own predictions to be
more pessimistic than most people. This effect of DASS was even stronger in the participant’s
later tests (DASS by diary number interaction: β = 0.047, 95% CI [0.011, 0.083], p = .010)
and when yesterday’s new cases were higher (DASS by yesterday’s new cases interaction: β

= 0.115, 95% CI [0.054, 0.176], p < .001). In contrast, FTP scores did not have a significant
main effect (β = −0.043, 95% CI [−0.124, 0.038], p = .297) or any significant interactions
(p > .10) on the magnitude of the pessimistic-me bias. Nor did the diary number (β = 0.005,
95% CI [−0.031, 0.042], p = .772) or yesterday’s new cases (β = 0.057, 95% CI [−0.012,
0.127], p = .108) have significant main effects on the bias. In other words, participants with
higher negative affect were aware of their pessimism, while participants with more extended
future time perspectives were not aware of their optimism.

4. Control experiment 1: Prediction from minimal experience under different
observations

There were two major limitations with our survey study. First, it was possible that our
findings were specific to the epidemic scenario instead of more generally about prediction
from minimal experience. Second, participants’ observations during the epidemic outbreak
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were uncontrollable, with the daily new cases almost consistently decreasing (though with
small fluctuations) throughout the period of our survey, which could hardly constitute a strong
test against coincidence. To address these two limitations, we performed a control experiment
where the prediction task of our survey study was replicated with a cover story that had
nothing to do with epidemics and where both the original time series of observations and a
new time series with a different trend were tested.

4.1. Methods

4.1.1. Participants
There were 63 participants who completed this study. Participants were Chinese-speaking

adults, recruited through the I-love-experiments platform (http://aishiyan.bnu.edu.cn/), an
online participant pool maintained by Beijing Normal University. The study had been
approved by the Institutional Review Boards of School of Psychological and Cognitive Sci-
ences at Peking University. All participants provided informed consent online. Participants
were compensated for their time, receiving 3.5 RMB for completing the experiment.

4.1.2. Design and procedure
Participants were told that there was an unknown object moving in an unknown space.

The object started to move in the first trial and would ultimately stop. In each trial (a virtual
day), participants were presented with the object’s traveling distance on yesterday. During the
first 16 trials (learning phase), participants only viewed the distance data and did not need
to respond. After the learning phase was a 40-trial prediction phase, where participants were
asked to predict the duration (i.e., number of days) needed for this object to stop. There were
also two attention check questions, one in the learning phase and the other in the predic-
tion phase. The experiment would end when participants failed in any of the attention check
questions.

Participants were randomly assigned into two groups, with different time series of daily
traveling distance presented to different groups. In the COVID group (34 participants), the
time series was the same as the daily new cases experienced by participants in the survey
study during the first wave of COVID-19 in China, though the cover story was now irrelevant
to epidemics. In the plateau group (29 participants), the time series was the same as the
COVID group for the first 16 trials (learning phase) but increased and decreased much more
slowly afterward, as if staying at the plateau (Fig. 6A).

4.1.3. Statistical and modeling analysis
An LMM analysis was performed to examine how the last trial’s observation and different

time series might influence participants’ predictions (see Supplement for a full description of
the LMM).

Similar to the survey study, we fit the duration-prior model, the similarity-FL model, and
the rule-FL model to predictions aggregated across participants, assuming that participants in
different groups shared the same model parameters. We did not fit the epidemiologist model
due to its inapplicability outside the epidemic scenario. We used the AIC of similarity-FL
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(a) (b)

Fig. 6. The two observation conditions and participants’ predictions in control experiment 1.

Note. Panel A: The sequence of daily new distances observed by each experimental group. In the learning phase,
participants were sequentially presented with the object’s traveling distances on 16 days. On each trial of the
prediction phase, participants were informed about the object’s traveling distance on the previous day (trial) and
were asked to predict the number of days until the object stops (i.e., the days needed for the daily new distance
to drop to 0). The observations used in the COVID group (gray square) were the same as the daily new cases in
the survey study. The observations for the plateau group (green circle) agreed with those of the COVID group on
the first 16 days (i.e., before day 0) but then slowly increased and decreased. Panel B: Predicted durations on each
virtual day (trial). Solid lines denote the geometric mean predictions. Shadings denote 95% CI.

model as a reference and calculated each model’s 
AIC as its difference from the reference.
Smaller 
AIC indicates a better fit.

4.2. Results

As expected, the predicted durations in the COVID and the plateau groups did not dif-
fer on day 1 (t (62) = −0.57, p = .57), to which point the two groups still had the same
observations. As the observed daily traveling distances in the two groups diverged, the two
groups showed different prediction patterns (Fig. 6B). In both groups, yesterday’s traveling
distance influenced participants’ predicted durations. The farther the traveling distance, the
longer the predicted durations (main effect β = 0.385, 95% CI [0.154, 0.617], p = .001). The
influence of yesterday’s traveling distance was weaker on later virtual days (interaction β =
–0.094, 95% CI [−0.174, −0.015], p = .020). Such effects were similar for the two groups:
neither the interaction between group and yesterday’s traveling distance (β = 0.340, 95%
CI [−0.009, 0.689], p = .056) nor the three-way interaction of group, yesterday’s traveling
distance, and virtual day number (β = –0.101, 95% CI [−0.245, 0.044], p = .172) reached
significance. This similar dependence on yesterday’s traveling distance across groups sug-
gests some common prediction algorithm for different observations.

Further modeling analysis replicated our finding in the survey study that the similarity-
FL model best fit participants’ predicted durations (Fig. 7). Note that we assumed the same
parameters for the COVID and the plateau groups (i.e., a common prediction algorithm for
different observations). In this way, the group differences in predicted durations could only
arise from the different groups’ different inputs to the model. Because the duration-prior
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Fig. 7. Model fitting and comparison results of control experiment 1.

Note. Panels A to C: Data versus model fits of the predicted durations for the duration-prior, rule-FL, and
similarity-FL models. All participants were treated as a collective mind, with their duration predictions aver-
aged separately for each group and each day (trial). Solid lines denote data and dashed lines denote group model
fits. Shadings for the data denote 95% CI. Panel D: Model comparison results. Smaller 
AIC indicates better fits.
Among the three models, the similarity-FL model fit best to participants’ duration predictions.

model only used the prior distribution of durations and elapsed days to predict, it failed to
capture the differences between the two groups at all (Fig. 7A). The rule-FL model pre-
dicted some group differences but had a large deviation from data for the COVID group
(Fig. 7B). In contrast, the similarity-FL model well captured the prediction patterns in both
groups (Fig. 7C). That is, when people have minimal experience, they use similarity-based
generalization to predict the future, regardless of the task scenario or the observed time series.

5. Control experiment 2: Prediction from different prior knowledge

In the main study and control experiment 1, we found converging evidence that human
prediction from minimal experience is similarity-based generalization of patterns in recent
history. This cognitive algorithm is in sharp contrast with those used in predictions from rich
prior knowledge, such as everyday statistics and intuitive physics. However, the prediction
task we used also differed from the typical tasks in everyday statistics or intuitive physics in
a few aspects. To prove that it is minimal versus rich experience instead of the particular task
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that makes the difference, we performed control experiment 2, directly testing the impact of
prior knowledge in our task. Participants performed the same duration prediction task as in
control experiment 1, except that they were first informed of the distribution of the historical
durations. By manipulating the prior distribution as well as the time series observed by partic-
ipants, we could understand how using past time series to predict the future may be influenced
by prior knowledge and may differ between prediction from minimal (control experiment 1)
and rich (control experiment 2) experience.

5.1. Methods

5.1.1. Participants
There were 90 participants who completed this study. Among them, one participant who

entered the same numerical answer across all 40 trials was excluded, and three participants
whose mean answers were outside 3 SD of the group average were excluded, resulting in 86
participants in total. Participants were Chinese-speaking adults, recruited through the Nao-
Dao research platform (https://www.naodao.com/), an online participant pool. The study had
been approved by the Institutional Review Boards of School of Psychological and Cognitive
Sciences at Peking University. All participants provided informed consent online. Participants
were compensated for their time, receiving 3.5 RMB for completing the experiment.

5.1.2. Design and procedure
Participants were randomly assigned into four conditions: two time series (COVID vs.

plateau, the same as control experiment 1) by two priors (Long vs. Short duration), thus
a 2×2 between-group design. The experimental procedure was the same as that of control
experiment 1, except that before the learning phase participants were shown a histogram of
100 durations and were told that the histogram visualized the distribution of the number of
days that similar objects traveled before stopping. The Short prior was generated with random
samples from a truncated Gamma distribution, which ranged between 20 and 70 days and had
a mean duration of 43 days. The Long prior was generated by adding 50 days to the samples
in the Short prior (Fig. 8A). To make sure that participants had learned the prior distribution of
durations, we inserted an additional attention check question about the duration prior before
the learning phase.

5.2. Results

We found that the group differences initially appeared as the differences between prior
conditions, with the predicted duration on day 1 being longer in the Long prior condition than
the Short prior condition (main effect of prior in two-way ANOVA: F (1, 82) = 34.73, p <

.001). As time went on, groups with the same prior but different observations diverged, while
groups with the same observations but different priors tended to converge (Fig. 8B).

In control experiment 1 where no prior information about duration was available, the influ-
ence of yesterday’s traveling distance on the predicted duration decreased with time in a simi-
lar way for both the COVID and plateau groups (i.e., negative interaction between yesterday’s
traveling distance and virtual day number, but a lack of three-way interaction with observation
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(a) (b)

Fig. 8. The two prior conditions and participants’ predictions in control experiment 2.

Note. Panel A: Two different prior distributions of durations presented to different participants. The Short prior
had a mean duration of 43 days after day 0. The Long prior was generated by adding 50 days to the Short prior.
Panel B: Participants’ predicted durations on each day (trial), separately for different observation (gray for the
COVID group and green for the plateau group) by prior (solid lines for the Long prior and dashed lines for the
Short prior) conditions. Shadings denote 95% CI.

group). In contrast, here we found a four-way interaction between yesterday’s traveling dis-
tance, virtual day number, the observation condition, and the prior condition (β = 0.160, 95%
CI [0.047, 0.273], p = .006), indicating that yesterday’s traveling distance influenced the pre-
dicted duration in difference temporal patterns for the four groups (2 observation conditions
by 2 prior conditions). The effect of yesterday’s traveling distance increased with time for the
COVID with Long prior group (β = 0.060, 95% CI [0.033, 0.088], p < .001), decreased with
time for the plateau with Long prior group (β = –0.077, 95% CI [–0.148, –0.007], p = .003),
and was almost constant over time for the two Short prior groups (COVID with Short prior:
β = –0.002, 95% CI [–0.028, 0.024], p = .877; plateau with Short prior: β = 0.020, 95% CI
[–0.051, 0.090], p = .582). In other words, when equipped with prior knowledge, people may
use a more complicated algorithm to predict the future, which integrates daily observations
with the prior distribution of durations and whose usage of daily observations varies with the
prior.

6. Discussion

During the first wave of COVID-19 outbreaks in China, people knew it was caused by a new
virus and witnessed prevention measures they had never experienced or even heard of, such as
the lockdown of a whole city of a 10-million population. Through a daily survey study span-
ning 40 days at this early phase of COVID-19 in China and two control experiments, here we
show what information and what cognitive computations people use for predicting the dura-
tion of the ongoing epidemic, and more generally, for prediction from minimal experience.
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6.1. Epidemic prediction as real-life function learning

In this real-life prediction task, it is impressive that people can make reasonable predictions
responsive to the daily epidemic data of COVID-19, even though no information about the
epidemic is presented in our survey so that people have to figure out by themselves which
information in the news is relevant to the task at hand.

Our finding that people do not seem to compute epidemic dynamics but rely on a more
heuristic way is in sharp contrast with what is found in intuitive physics. When predicting
daily physical events, people draw predictions in a way that is similar to an “intuitive physics
engine” that can simulate the future based on a mechanistic theory of physical laws (Battaglia
et al., 2013; Kubricht et al., 2017). Such kind of mental simulation actually relies on one’s
experience in the everyday physical world (Kaiser, Jonides, & Alexander, 1986). In contrast,
when facing an epidemic caused by a new virus, people have limited experience as well as
insufficient knowledge of the underlying epidemic dynamics, which impedes a simulation-
engine-like reasoning process. Besides, the stochastic nature of biological disease transmis-
sion is also different from the relatively deterministic physical events people experience from
their daily life. The stochasticity, along with the complex interpersonal interactions in the
society, makes the computations rather expensive for a mental epidemic simulation engine.
That is probably why predicting epidemic dynamics may tax cognitive computations different
from intuitive physics.

The lack of experience in epidemic durations also prevents people from directly inferring
from a descriptive theory of duration distributions that directly combine the prior durations
with elapsed time, as they do for the prediction of everyday events (Griffiths & Tenenbaum,
2006, 2011; McGuire & Kable, 2013). What people do in our task is closest to function
learning that generalizes past daily case numbers to extrapolate the future. Our control exper-
iment 1 further confirms this similarity-based generalization under minimal experience. When
provided with different trends of daily observations in a different scenario irrelevant to epi-
demics, participants show the same prediction behavior—generalizing past observations with
similarity-based function learning.

In the framework of Bayesian regression (Lucas et al., 2015; Rasmussen & Williams,
2005), different rule-based models can be implemented with Bayesian regression with dif-
ferent kernels. The similarity-based function learning we found is equivalent to assuming
a radial-basis-function kernel, imposing minimal constraints on the temporal pattern except
for smooth changes. The use of this kernel has been reported in laboratory function learning
tasks (Quiroga et al., 2018; Schulz et al., 2017), but mainly as complements to more rule-
based learning (e.g., linear or periodic trends). Given that people can choose suitable kernels
for different everyday situations (Quiroga et al., 2018), a solo use of this minimal-constraint
kernel like ours may thus be motivated by the prediction situation from minimal experience.

The winning of the similarity-based model is confined to the scenario where people have
minimal experience. In situations people have rich experience with, the duration-prior model
is likely to outperform the similarity-FL model. Imagine that we are watching a 100-meter
race. Now the legendary world champion, Usain Bolt, is temporarily behind other runners.
Despite this unfavorable observation, we might still predict that he would finish in less than
10 s and win the race, because we have rich experience about his past performance. Such
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prediction may be better captured by the duration-prior model, where the prior belief about
the durations exerts a strong influence on the prediction of future durations.

6.2. Individual differences and biases in epidemic prediction

In our real-life prediction problem, the future people need to predict is part of their lives
and thus carries emotional values. Compared with individuals with less negative affect, we
found that individuals with higher negative affect update their predictions with time more
slowly, as if they hesitated to believe that the epidemic is approaching its end day after day.
It is probably because individuals with higher negative affect weigh positive information less
during their belief updating (Hein, de Fockert, & Ruiz, 2021; Korn, Sharot, Walter, Heek-
eren, & Dolan, 2014). This finding is also reminiscent of an influential model suggesting
that exposure to stress or negative affect enhances emotional sensitivity but impairs cognitive
computations critical for simulating future predictions (Liu et al., 2022; van Marle, Hermans,
Qin, & Fernández, 2009). In contrast, individuals’ perspectives for the future do not seem
to influence the updating but the mean value of epidemic predictions: More future-oriented
people predict the epidemic to end sooner. It implies that future orientation perspectives may
enhance individuals’ expectation for good outcomes.

Negative affect and future time perspectives also differ in their effects on the “pessimistic-
me bias,” the phenomenon that people consider themselves to be more pessimistic than the
majority when predicting the epidemic duration. This bias is augmented by more negative
affect, but unaffected by future time perspectives. It seems that individuals with more neg-
ative affect (depression, anxiety, or stress) are aware of their own biased beliefs of a more
uncertain and pessimistic world, which again agrees with the enhanced emotional sensitiv-
ity but impaired cognitive computations under stressful and anxious conditions as discussed
above.

6.3. Limitations and future directions

That our prediction task is situated in real life—during the outbreak of an epidemic—
instead of in artificial laboratory settings enhances the ecological validity of our conclusions
but meanwhile brings several methodological limitations that need to be addressed in future
research. One limitation is the lack of manipulation of the epidemic trend: The daily new cases
were almost consistently decreasing (though with small fluctuations) throughout the period
of our survey. But this limitation has been partly addressed by our control experiments, where
similarity-based generalization also holds for time series with nonmonotonic trends. A sec-
ond limitation is that we could not rule out all possible forms of rule-based inference. The
quadratic rule we tested was chosen to capture the intuition of a bell-shaped curve of the
new cases. Besides, in situations where people have life experience about the observed time
series, a combination of rule-based and similarity-based inference (implemented as Gaussian
process with compound kernel functions) has been found to account well for human pre-
diction of future trends (Quiroga et al., 2018). A third limitation of our study is about the
interpretation of individual differences. In our survey study, FTP and DASS were selected
post hoc from a large number of psychological scales for their correlation with individual
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duration predictions. Whether and how these two factors really influence people’s predictions
awaits further investigation.

The results of the two control experiments have strengthened our conclusions about pre-
diction from minimal experience, to which the epidemic prediction in the main study is a spe-
cial case. In contrast to prediction from minimal experience, when people are provided with
prior statistics of the to-be-predicted duration, they could integrate the duration prior with the
observed time series to predict the future. This integration involves a potentially complicated
generative model that, to our knowledge, has seldom been treated in the Bayesian literature
of human cognition. Its underlying cognitive computation deserves further research.

Another future question is whether people may switch from similarity-based generaliza-
tions to more model-based predictions (as for everyday statistics or intuitive physics) after
they have acquired more experience about the situation, such as after experiencing more
waves of COVID-19. An analogy is the development of Theory of Mind in preschoolers,
or how young children infer others’ mental states (Perner & Davies, 1991). Three-year-old
children, as naïve mindreaders with limited knowledge about other people’s mental states, use
a “copy theory” to infer others’ mind, assuming that other people think exactly as themselves.
As their knowledge of people’s mind accumulates, till 5 years old, children form a “theory
theory,” a folk psychological theory about what other people are thinking. For many real-
world prediction problems, adults might go through a similar process of developing theories
from experience.
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more perceptual predictions.

 15516709, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13294 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://osf.io/wu4s3/
https://osf.io/wu4s3/


Y.-L. Lu et al. / Cognitive Science 47 (2023) 27 of 29

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Allen, L. J. S. (1994). Some discrete-time SI, SIR, and SIS epidemic models. Mathematical Biosciences, 124(1),
83–105. https://doi.org/10.1016/0025-5564(94)90025-6

Au, T. K., Chan, C. K. K., Chan, T., Cheung, M. W. L., Ho, J. Y. S., & Ip, G. W. M. (2008). Folkbiology meets
microbiology: A study of conceptual and behavioral change. Cognitive Psychology, 57(1), 1–19. https://doi.
org/10.1016/j.cogpsych.2008.03.002

Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understand-
ing. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18327–18332.
https://doi.org/10.1073/pnas.1306572110

Bertozzi, A. L., Franco, E., Mohler, G., Short, M. B., & Sledge, D. (2020). The challenges of modeling and
forecasting the spread of COVID-19. Proceedings of the National Academy of Sciences of the United States of
America, 117(29), 16732–16738. https://doi.org/10.1073/pnas.2006520117

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-
theoretic approach (2nd ed.). New York: Springer-Verlag. https://doi.org/10.1007/b97636

Burstein, P. (2003). The impact of public opinion on public policy: A review and an agenda. Political Research
Quarterly, 56(1), 29–40. https://doi.org/10.2307/3219881

Carstensen, L. L., & Lang, F. R. (1996). Future orientation scale [Unpublished manuscript]. Stanford, CA: Stan-
ford University.

Chu, L. C., & Kao, H. S. (2005). The moderation of meditation experience and emotional intelligence on the
relationship between perceived stress and negative mental health. Chinese Journal of Psychology, 47(2), 178–
194.

Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and
Social Behavior, 24(4), 385. https://doi.org/10.2307/2136404

Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., Neto, J. P., Wilczek, M., & Priesemann, V. (2020). Infer-
ring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science, 369(6500),
eabb9789. https://doi.org/10.1126/science.abb9789

DeLosh, E. L., Busemeyer, J. R., & McDaniel, M. A. (1997). Extrapolation: The sine qua non for abstraction
in function learning. Journal of Experimental Psychology: Learning Memory and Cognition, 23(4), 968–986.
https://doi.org/10.1037/0278-7393.23.4.968

Estrada, E. (2020). COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Physics Reports,
869, 1–51. https://doi.org/10.1016/j.physrep.2020.07.005

Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Mellan, T. A., Coupland, H., Whittaker, C., Zhu, H., Berah,
T., Eaton, J. W., Monod, M., Ghani, A. C., Donnelly, C. A., Riley, S., Vollmer, M. A. C., Ferguson, N. M.,
Okell, L. C., & Bhatt, S. (2020). Estimating the effects of non-pharmaceutical interventions on COVID-19 in
Europe. Nature, 584(7820), 257–261. https://doi.org/10.1038/s41586-020-2405-7

Fu, Han, Haowei Wang, Xiaoyue Xi, Adhiratha Boonyasiri, Yuanrong Wang, Wes Hinsley, Keith J. Fraser, Ruth
McCabe, Daniela Olivera Mesa, Janetta Skarp, Alice Ledda, Tamsin Dewé, Amy Dighe, Peter Winskill, Sabine
L. van Elsland, Kylie E. C. Ainslie, Marc Baguelin, Samir Bhatt, Olivia Boyd, Nicholas F. Brazeau, Lorenzo
Cattarino, Giovanni Charles, Helen Coupland, Zulma M. Cucunuba, Gina Cuomo-Dannenburg, Christl A. Don-
nelly, Ilaria Dorigatti, Oliver D. Eales, Richard G. FitzJohn, Seth Flaxman, Katy A. M. Gaythorpe, Azra C.
Ghani, William D. Green, Arran Hamlet, Katharina Hauck, David J. Haw, Benjamin Jeffrey, Daniel J. Laydon,
John A. Lees, Thomas Mellan, Swapnil Mishra, Gemma Nedjati-Gilani, Pierre Nouvellet, Lucy Okell, Kris
V. Parag, Manon Ragonnet-Cronin, Steven Riley, Nora Schmit, Hayley A. Thompson, H. Juliette T. Unwin,
Robert Verity, Michaela A. C. Vollmer, Erik Volz, Patrick G. T. Walker, Caroline E. Walters, Oliver J. Watson,
Charles Whittaker, Lilith K. Whittles, Natsuko Imai, Sangeeta Bhatia, and Neil M. Ferguson (2021). Database
of epidemic trends and control measures during the first wave of COVID-19 in mainland China. International
Journal of Infectious Diseases, 102, 463–471. https://doi.org/10.1016/j.ijid.2020.10.075

 15516709, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13294 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/0025-5564(94)90025-6
https://doi.org/10.1016/j.cogpsych.2008.03.002
https://doi.org/10.1016/j.cogpsych.2008.03.002
https://doi.org/10.1073/pnas.1306572110
https://doi.org/10.1073/pnas.2006520117
https://doi.org/10.1007/b97636
https://doi.org/10.2307/3219881
https://doi.org/10.2307/2136404
https://doi.org/10.1126/science.abb9789
https://doi.org/10.1037/0278-7393.23.4.968
https://doi.org/10.1016/j.physrep.2020.07.005
https://doi.org/10.1038/s41586-020-2405-7
https://doi.org/10.1016/j.ijid.2020.10.075


28 of 29 Y.-L. Lu et al. / Cognitive Science 47 (2023)

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science,
17(9), 767–773. https://doi.org/10.1111/j.1467-9280.2006.01780.x

Griffiths, T. L., & Tenenbaum, J. B. (2011). Predicting the future as Bayesian inference: People combine prior
knowledge with observations when estimating duration and extent. Journal of Experimental Psychology: Gen-
eral, 140(4), 725–743. https://doi.org/10.1037/a0024899

Hamrick, J. B., Battaglia, P. W., Griffiths, T. L., & Tenenbaum, J. B. (2016). Inferring mass in complex scenes by
mental simulation. Cognition, 157, 61–76. https://doi.org/10.1016/j.cognition.2016.08.012

Hein, T. P., de Fockert, J., & Ruiz, M. H. (2021). State anxiety biases estimates of uncertainty and impairs
reward learning in volatile environments. NeuroImage, 224, 117424. https://doi.org/10.1016/j.neuroimage.
2020.117424

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller, H., Huang, L. Y., Hultgren,
A., Krasovich, E., Lau, P., Lee, J., Rolf, E., Tseng, J., & Wu, T. (2020). The effect of large-scale anti-contagion
policies on the COVID-19 pandemic. Nature, 584, 262–267. https://doi.org/10.1038/s41586-020-2404-8

Kaiser, M. K., Jonides, J., & Alexander, J. (1986). Intuitive reasoning about abstract and familiar physics problems.
Memory & Cognition, 14(4), 308–312. https://doi.org/10.3758/bf03202508

Kalichman, S. C., & Cain, D. (2005). Perceptions of local HIV/AIDS prevalence and risks for HIV/AIDS and other
sexually transmitted infections: Preliminary study of intuitive epidemiology. Annals of Behavioral Medicine,
29(2), 100–105. https://doi.org/10.1207/s15324796abm2902_4

Korn, C. W., Sharot, T., Walter, H., Heekeren, H. R., & Dolan, R. J. (2014). Depression is related to an absence of
optimistically biased belief updating about future life events. Psychological Medicine, 44(3), 579–592. https:
//doi.org/10.1017/S0033291713001074

Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: Current research and controversies. Trends in
Cognitive Sciences, 21(10), 749–759. https://doi.org/10.1016/j.tics.2017.06.002

Legare, C. H., Evans, E. M., Rosengren, K. S., & Harris, P. L. (2012). The coexistence of natural and supernatural
explanations across cultures and development: Coexistence of natural and supernatural explanations. Child
Development, 83(3), 779–793. https://doi.org/10.1111/j.1467-8624.2012.01743.x

Li, J., Lai, S., Gao, G. F., & Shi, W. (2021). The emergence, genomic diversity and global spread of SARS-CoV-2.
Nature, 600(7889), 408–418. https://doi.org/10.1038/s41586-021-04188-6

Liu, L., Wu, J., Geng, H., Liu, C., Luo, Y., Luo, J., & Qin, S. (2022). Long-term stress and trait anxiety affect brain
network balance in dynamic cognitive computations. Cerebral Cortex. 32(14), 2957–2971. https://doi.org/10.
1093/cercor/bhab393

Lucas, C. G., Griffiths, T. L., Williams, J. J., & Kalish, M. L. (2015). A rational model of function learning.
Psychonomic Bulletin & Review, 22(5), 1193–1215. https://doi.org/10.3758/s13423-015-0808-5

Maier, B. F., & Brockmann, D. (2020). Effective containment explains subexponential growth in recent confirmed
COVID-19 cases in China. Science, 368(6492), 742–746. https://doi.org/10.1126/science.abb4557

McGuire, J. T., & Kable, J. W. (2013). Rational temporal predictions can underlie apparent failures to delay
gratification. Psychological Review, 120(2), 395–410. https://doi.org/10.1037/a0031910

Merow, C., & Urban, M. C. (2020). Seasonality and uncertainty in global COVID-19 growth rates. Proceedings
of the National Academy of Sciences of the United States of America, 117(44), 27456–27464. https://doi.org/
10.1073/pnas.2008590117

Mozer, M. C., Pashler, H., & Homaei, H. (2008). Optimal predictions in everyday cognition: The wisdom of
individuals or crowds? Cognitive Science, 32(7), 1133–1147. https://doi.org/10.1080/03640210802353016

Perner, J., & Davies, G. (1991). Understanding the mind as an active information processor: Do young children
have a “copy theory of mind”? Cognition, 39(1), 51–69. https://doi.org/10.1016/0010-0277(91)90059-D

Quiroga, F., Schulz, E., Speekenbrink, M., & Harvey, N. (2018). Structured priors in human forecasting. BioRxiv,
285668. https://doi.org/10.1101/285668

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian processes for machine learning. MIT Press. https:
//doi.org/10.7551/mitpress/3206.001.0001

Rubin, G. J., Amlot, R., Page, L., & Wessely, S. (2009). Public perceptions, anxiety, and behaviour change in
relation to the swine flu outbreak: Cross sectional telephone survey. BMJ, 339, b2651 https://doi.org/10.1136/
bmj.b2651

 15516709, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13294 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/j.1467-9280.2006.01780.x
https://doi.org/10.1037/a0024899
https://doi.org/10.1016/j.cognition.2016.08.012
https://doi.org/10.1016/j.neuroimage.2020.117424
https://doi.org/10.1016/j.neuroimage.2020.117424
https://doi.org/10.1038/s41586-020-2404-8
https://doi.org/10.3758/bf03202508
https://doi.org/10.1207/s15324796abm2902_4
https://doi.org/10.1017/S0033291713001074
https://doi.org/10.1017/S0033291713001074
https://doi.org/10.1016/j.tics.2017.06.002
https://doi.org/10.1111/j.1467-8624.2012.01743.x
https://doi.org/10.1038/s41586-021-04188-6
https://doi.org/10.1093/cercor/bhab393
https://doi.org/10.1093/cercor/bhab393
https://doi.org/10.3758/s13423-015-0808-5
https://doi.org/10.1126/science.abb4557
https://doi.org/10.1037/a0031910
https://doi.org/10.1073/pnas.2008590117
https://doi.org/10.1073/pnas.2008590117
https://doi.org/10.1080/03640210802353016
https://doi.org/10.1016/0010-0277(91)90059-D
https://doi.org/10.1101/285668
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.7551/mitpress/3206.001.0001
https://doi.org/10.1136/bmj.b2651
https://doi.org/10.1136/bmj.b2651


Y.-L. Lu et al. / Cognitive Science 47 (2023) 29 of 29

Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M., & Gershman, S. J. (2017). Compositional induc-
tive biases in function learning. Cognitive Psychology, 99, 44–79. https://doi.org/10.1016/j.cogpsych.2017.11.
002

Sigelman, C. K., & Glaser, S. E. (2019). Characterizing children’s intuitive theories of disease: The case of flu.
Cognitive Development, 52, 100809. https://doi.org/10.1016/j.cogdev.2019.100809

Smith, K. A., Battaglia, P. W., & Vul, E. (2018). Different physical intuitions exist between tasks, not domains.
Computational Brain & Behavior, 1(2), 101–118. https://doi.org/10.1007/s42113-018-0007-3

Spielberger, C., Gorsuch, R., Lushene, R., Vagg, P., & Jacobs, G. (1983). Manual for the State-Trait Anxiety
Inventory (Form Y1–Y2). Palo Alto, CA: Consulting Psychologists Press.

Stojic, H., Schulz, E., Analytis, P. P., & Speekenbrink, M. (2020). It’s new, but is it good? How generalization and
uncertainty guide the exploration of novel options. Journal of Experimental Psychology: General, 1878–1907.
https://doi.org/10.1037/xge0000749

Taouk, M., Lovibond, P. F., & Laube, R. (2001). Psychometric properties of a Chinese version of the 21-item
Depression Anxiety Stress Scales (DASS21). Sydney, NSW: Transcultural Mental Health Centre. Cumberland
Hospital.

van Marle, H. J. F., Hermans, E. J., Qin, S., & Fernández, G. (2009). From specificity to sensitivity: How acute
stress affects amygdala processing of biologically salient stimuli. Biological Psychiatry, 66(7), 649–655. https:
//doi.org/10.1016/j.biopsych.2009.05.014

Wang, X., Wang, X., & Ma, H. (1999). Handbook of Mental Health Assessment Scales (revised). Retrieved from
http://ir.bjmu.edu.cn/handle/400002259/91600

Zheng, X., Shu, L., Zhang, A., Huang, G., Zhao, J., Sun, M., Fu, Y., Li, H., & Xu, D. (1993). Report of the
state-trait anxiety in Changchun. Chinese Mental Health Journal, 02, 60–62.

Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Figure S1
Figure S2
Figure S3
Figure S4
Supplemental Online Material

 15516709, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13294 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.cogpsych.2017.11.002
https://doi.org/10.1016/j.cogpsych.2017.11.002
https://doi.org/10.1016/j.cogdev.2019.100809
https://doi.org/10.1007/s42113-018-0007-3
https://doi.org/10.1037/xge0000749
https://doi.org/10.1016/j.biopsych.2009.05.014
https://doi.org/10.1016/j.biopsych.2009.05.014
http://ir.bjmu.edu.cn/handle/400002259/91600

