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Structural connectome architecture shapes
the maturation of cortical morphology from
childhood to adolescence

Xinyuan Liang 1,2,3, Lianglong Sun1,2,3, Xuhong Liao 4, Tianyuan Lei 1,2,3,
Mingrui Xia 1,2,3, Dingna Duan1,2,3, Zilong Zeng1,2,3, Qiongling Li 1,2,3,
Zhilei Xu1,2,3, Weiwei Men5,6, Yanpei Wang1, Shuping Tan7, Jia-Hong Gao 5,6,8,
Shaozheng Qin 1,2,3,9, Sha Tao 1, Qi Dong1, Tengda Zhao 1,2,3 &
Yong He 1,2,3,9

Cortical thinning is an important hallmark of the maturation of brain mor-
phology during childhood and adolescence. However, the connectome-based
wiring mechanism that underlies cortical maturation remains unclear. Here,
we show cortical thinning patterns primarily located in the lateral frontal and
parietal heteromodal nodes during childhood and adolescence, which are
structurally constrained by white matter network architecture and are parti-
cularly represented using a network-based diffusion model. Furthermore,
connectome-based constraints are regionally heterogeneous, with the largest
constraints residing in frontoparietal nodes, and are associated with gene
expression signatures of microstructural neurodevelopmental events. These
results are highly reproducible in another independent dataset. These findings
advance our understanding of network-level mechanisms and the associated
genetic basis that underlies the maturational process of cortical morphology
during childhood and adolescence.

The transition period from childhood to adolescence is character-
ized by prominent reorganization of cortical morphology1,2, which
provides critical support for cognitive growth3,4. With progress in
modern in vivo structural brain imaging, researchers have docu-
mented widespread spatial refinements of cortical morphology
during childhood and adolescence5,6. A typical cortical maturation
sequence is marked by hierarchical cortical thinning from the pri-
mary cortex to the association cortex1,7,8 and is thought to be medi-
ated by cellular mechanisms, genetic regulation, and biomechanical
factors9,10. From a multifaceted developmental perspective,

anatomical refinements within neuronal layers at local gyri and sulci,
such as synaptic pruning and myelination11,12, as well as the tension
exerted bywhitematter (WM) fibers13,14, could collectively contribute
to cortical maturation. Specifically, WM pathways serve as a struc-
tural scaffold for interregional communication, playing a crucial role
in supporting the intricate interplay among these factors. Under-
standing how the brain WM scaffold facilitates anatomical refine-
ments can provide new insights into maturational principles of
cortical morphology. In the present study, we present a mechanistic
approach to model how the maturational pattern of cortical
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morphology is shaped by WM connectome architecture from child-
hood to adolescence.

At the microscale level, numerous histological studies have sug-
gested that the brain’sWMpathways are involved in the developmental
process of cortical gray matter. During neural circuit formation, axons
express guidance receptors to integrate attractive and repulsive envir-
onmental information for navigation to their target neurons15,16. After
axons arrive, synaptic maintenance and plasticity rely on active axonal
transport through axonal cytoskeletons, which offers essential delivery
of neurotrophic factors, energy requirements, and synthesized or
degraded proteins for long-distance cortical neurons17–19. Such early-
established neuronal pathways could lead to preferences in attracting
or removing new links during the formation of cortical hubs20. Physical
simulation studies have suggested that there is a tension-induced rela-
tionship between fiber growth and cortical fold morphology13,14. At a
macroscale level, several prior studies using structural and diffusion
magnetic resonance imaging (MRI) have also shown that decreases in
focal cortical thickness (CT) are associated with increased micro-
structural anisotropy and decreased mean diffusivity in adjacent
WM21–24 and that homologous cortical regions, which are rich in WM
fibers, exhibit stronger maturational couplings of CT than non-
homologous regions23,25. Notably, all these previous studies are limited
to local cortical regions or specific fiber tracts. The human brain is a
highly interactive network in nature in which connections promote
information exchangebetweenbrain regions, raising thepossibility that
the maturation of focal cortical morphology is shaped by the overall
architecture of the WM connectome. However, whether and how the
maturation pattern of cortical morphology from childhood to adoles-
cence is constrained by physical network structures, and specifically,
whether this constraint works following a network-based diffusion
model, remains largely unknown.We anticipate thatmodels of regional
cortical maturation would yield mechanistic insights into the network
structure that governs the coordinated development of cortical mor-
phology among regions.

If the connectome structure shapes regional cortical maturation,
it is necessary to further clarify whether this constraint is associated
with genetic factors. Converging evidence indicates that genetic
modulations may exist on the potential constraint of WM maturation
on cortical morphology. Studies on the rodent nervous system26,27

have shown that the wiring diagram of brains is tracked by genes that
are involved in axon guidance and neuronal development processes.
Such genetic cues are also related to molecules responsible for
cytoskeletal rearrangements that induce cortical refinement pro-
cesses, including synaptic pruning and neuron cell death16. In humans,
recent emerging transcriptome imaging analyses pave a new way to
link brain macroscale structural maturation to microscale biological
processes by seeking linkages between MRI-based brain measure-
ments and genetic samples of postmortem brains. Such studies have
shown that cortical thinning during development is related to genes
involved in the structure and function of synapses, dendrites, and
myelin28,29. These precisely programmed microstructural alterations
constitute major neurodevelopmental events that promote the
establishment of more mature brain architecture and anatomical
connectivity from childhood to adolescence30,31. Therefore, we further
hypothesize that the constraint between the maturation of cortical
morphology and WM network structure is associated with gene
expression profiles that are involved in neurodevelopment.

To fill these gaps, in the present study, we integrated neuroima-
ging, connectome, and transcriptome analyses as well as computa-
tional modeling to investigate the network-level mechanisms
underlying regional changes in cortical morphology during childhood
and adolescence and to further explore their potential genetic
underpinnings. Specifically, we tested three hypotheses: (i) that the
maturation of CT in brain nodes is associated with that of structurally
connected neighbors, (ii) that the network-level diffusion model,

which represents the direct and high-order information exchange
preferences among neighbors, captures the principle of connectome
constraint on the maturation of CT, and (iii) that the connectome
constraints on cortical maturation are linked with gene expression
levels of neurodevelopment processes.

Results
Data samples
To investigate the relationship between cortical morphology matura-
tion and the WM connectome from childhood to adolescence, we
leveraged structural and diffusion MRI data from a longitudinal MRI
dataset (“discovery dataset”) containing 521 brain scans from 314
participants (aged 6−14 years) in the Children School Functions and
Brain Development Project in China (Beijing Cohort) (Fig. 1a). Among
theparticipants, 158underwent a single scan, 105 underwent two scans
separated by an average interval of 1.16 years, and 51 underwent three
scans separated by an average interval of 0.99 years.

Currently, it is not clear which statistical models best capture
cortical development over time. Therefore, in the present study, we
employed three distinct statistical models to assess nodal CT
maturation from childhood to adolescence, which include group-
wise comparisons between children and adolescents with a mixed
linear model32 (Statistical Model I), generalized additive model
(GAM) analysis33 including age as a continuous variable (Statistical
Model II), and individual-level longitudinal analysis using repeated
brain imaging scans (Statistical Model III). Our comprehensive ana-
lyses aim to yield robust conclusions about the maturational pattern
of cortical morphology from childhood to adolescence and how the
structural connectome architecture shapes cortical maturation. In
Statistical Model I, we employed a group-wise comparison to exam-
ine the critical transition from childhood to adolescence. In this
analysis, we divided all participants into the child group (218 parti-
cipants, 299 scans, 6.08−9.98 y) and the adolescent group (162 par-
ticipants, 222 scans, 10.00−13.99 y) using the age of 10 years as a cut-
off, according to the criteria from a previous public health
investigation34 and the World Health Organization (WHO)35. This
method has an advantage in that it is less sensitive to the age dis-
tribution of individuals and does not require prior models for fitting
age-related growth curves of CT; however, it loses some power to
capture fine-grained, age-related change trajectories of CT
maturation5,36. In Statistical Model II, we employed a GAM analysis
that treated age as a continuous variable to chart the fine-grained
cortical maturation patterns. In this way, we obtained age-related
change curves of cortical maturation and investigated how these
morphological refinements were constrained by the WM network
architecture across different ages. However, this method is sensitive
to the sample sizes for each age. In Statistical Model III, we leveraged
longitudinal structural MRI data from participants who underwent
two or three repeated scans to examine the individual differences in
cortical maturation. This individual-based analysis focused on cap-
turing pure longitudinal changes within individuals, minimizing
intersubject confounds such as lifestyle and genetic factors37–39. To
assess the reproducibility of our results, we included an independent
dataset (“replication dataset”) that contains cross-sectional struc-
tural and diffusion MRI data from 301 typically developing partici-
pants selected from the Lifespan Human Connectome Project in
Development (HCP-D)40. Statistical Models I and II were applied to
the cross-sectional replication dataset. Details on the demographic
information of all participants, data acquisition, and data analysis are
provided in theMethods section and Supplementary Sections 1.1−1.2.

Typical spatial refinement of brain CT from childhood to
adolescence
For each individual, we first parcellated the brain cortex into 1000
nodes of interest with approximately equal size (219 and 448 node
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parcellations as a validation41) according to the modified Desikan-
Kiliany atlas42,43. Then, we computed the average CT for each brain
node based on structural MR images in the FreeSurfer v6.0 image
analysis suite (https://surfer.nmr.mgh.harvard.edu/) (for details, see
the Methods). To delineate the spatial maturation map of brain mor-
phology, we estimated the statistical differences in regional CT
between the child and adolescent groups to represent the CT
maturation extent by a mixed linear analysis32 with sex included as a
covariate (Statistical Model I). Brain nodes showed significant cortical
thinning, mainly concentrated in dorsolateral prefrontal regions, lat-
eral temporal and lateral parietal regions (Fig. 1b, t values > 4.10,
P <0.05, Bonferroni corrected). To test whether this maturation pat-
tern is anchored to specific brain systems, we classified all cortical
nodes into seven well-validated brain communities44 and performed a
spherical projection null test (“spin test”) to correct for spatial auto-
correlations by permuting communities positions 1000 times45,46. The
class-specific mean t-values were expressed as z scores relative to this
nullmodel. We found that all brain systems showed decreased CTwith
development on average. The frontoparietal (FP) system and default
mode (DM) system showed higher cortical thinning than expected by
chance (FP: pspin =0.029; DM: pspin =0.068, Fig. 1c). The somatomotor
(SM) system displayed lower cortical thinning than expected by
chance (pspin =0.004). We also repeated this analysis by classifying
cortical nodes into four laminar differentiation levels47. We found that
heteromodal areas displayed cortical thinning (pspin< 0.001), while
idiotypic areas showed lower cortical thinning than expected by
chance (pspin = 0.001, Fig. 1d). Consistent results were found at the
other two parcellation resolutions (Supplementary Figs. S1, S2). These
results are largely compatible with previous studies1,8, demonstrating

that CT exhibits the most pronounced thinning in high-order asso-
ciation areas and is relatively preserved in primary areas from child-
hood to adolescence.

Spatial maturation of CT links with direct WM connections
Next, we tested whether the regional maturation of CT was associated
with the WM network architecture. To this end, we first reconstructed
individual structural connectomeswith 1000 nodes (219 and 448 nodes
were used for validation) based on diffusion MR images of the child
group by performing deterministic tractography between cortical
regions48,49. We then generated a binary, group-level connectome by
using a consensus approach that preserved the connection length dis-
tributions of individual networks50 (Fig. 2a, Supplementary Section 2.1).

Next, we estimated the across-node relationship of the CT
maturation extent (t-value between the child and adolescent group,
derived from Statistical Model I) between a node and its directly
connected neighbor nodes in the backbone (Fig. 2b). We found a sig-
nificant spatial correlation between the nodal CT maturation extent
and the mean of its directly connected neighbors (Fig. 2c, adjusted
r =0.74, P = 5.56 × 10−176). Next, we tested the significance of this spatial
correlation against two baseline nullmodels. The firstmodel evaluated
whether the observed correlation was determined by the wiring
topology rather than the basic spatial embedding of theWMnetwork51.
Specifically, we generated 1000 surrogate networks by randomly
rewiring edges while preserving the nodal degree and approximate
edge length distribution of the empiricalWMnetwork (“rewired”). The
second model evaluated whether the observed correlation was
induced by regional correspondence rather than the spatial auto-
correlation of CT maturation45,46. Specifically, we generated
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tion class positions 1000 times for correcting spatial autocorrelations, and the
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positive z score indicates greater cortical thinning than expected by chance.
Asterisks denote significant level at pspin <0.05 (pspin(FP) = 0.029,
pspin(SM) = 0.004, pspin(HM) < 0.001, and pspin(IT) = 0.001, one-sided). VIS, visual;
SM, somatomotor; LIM, limbic; DA, dorsal attention; VA, ventral attention; FP,
frontoparietal; DM, default mode; IT, idiotypic; PL, paralimbic; UM, unimodal and
HM, heteromodal. Values of the brain map were visualized using BrainNet
Viewer (1.7)140.
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1000 surrogate maps by rotating region-level cortical t values (“spin
test”). After recalculating the correlation coefficient, we found that the
observed correlation was significantly higher than the correlations in
both null models, and these results were highly consistent for all three
nodal resolutions (all prewired <0.001 and all pspin <0.001, Fig. 2d).
Interestingly, when estimating the spatial correlations at the system
level, we found that direct WM connections within the heteromodal
area, especially within and between the FP and DM networks, showed
strong associations with the maturation of CT (Fig. 2e).

Considering that spatially adjacent nodes may intrinsically exhibit
similar cortical development trends, we further performed another two
confounding analyses to demonstrate that the observed correlation is
not determined by the spatial proximity effect. In the first analysis, we
excluded all spatially adjoining neighbors and recalculated themeanCT
maturation extent of the remaining structurally connected neighbors
for each brain region (“excluded”). In the second analysis, we regressed
out the effect of nodal mean Euclidean distance to its connected
neighbors from the mean CT maturation extent (“regressed”). After re-
estimating the empirical correlation coefficient (1000-node: adjusted
rexcluded =0.60 and adjusted rregressed =0.74), we repeated two null
model tests and found highly consistent results at all three nodal
resolutions (all prewired <0.001, pspin <0.001, Supplementary Fig. S3).

To further validate whether the associations between direct
WM connections and regional CT maturation exist throughout 6 to
14 years old, we treated age as a continuous variable (Statistical
Model II) instead of dividing participants into two groups. We
employed a semiparametric GAM33 that included sex as a covariate
and participant as a random effect to fit the maturation curves of
nodal CT with age. Significant effects of age on nodal CT were
found in the dorsolateral prefrontal regions, lateral temporal
regions, and lateral parietal regions (Fig. 3a, P < 0.05, Bonferroni
corrected). Two representative fitting curves of nodal CT matura-
tion in the prefrontal cortex and inferior parietal cortex are shown
in Fig. 3b. Next, we obtained the maturation rates of nodal CT at
each age by calculating the first derivative of the age smooth
function. The brain maps of CT maturation rates at three repre-
sentative ages are shown in Fig. 3c. Finally, we calculated the
across-node correlation of the rate of CT maturation between a
node and its directly connected neighbor nodes and tested this
correlation against two baseline null models at each year of age. We
found a significant spatial correlation between the nodal CT
maturation rate and the mean of its directly connected neighbors
across different age points (r: ranged from 0.62 to 0.71, all
pspin < 0.001, all prewired < 0.001, Fig. 3d).
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Considering the individual differences in corticalmaturation37, we
further assessed whether the association between the WM network
and CT maturation exists at the individual level by utilizing all indivi-
dual longitudinal scans independently (105 participants underwent
two scans and 51 participants underwent three scans) (Statistical
Model III). We first estimated the brain map of nodal CT maturation
rates for each individual (Fig. 3e) by calculating thenodal CTdifference
between two brain scans divided by the gap of scan ages (ΔCT/Δscan
age, Fig. 3e left panels). Next, we reconstructed the individual WM
networks and repeated the correlation analysis between nodal CT
maturation rates and themeanof its directlyWM-connectedneighbors
within each individual (Fig. 3e right panels). We found that this

correlation was significant in almost all individuals (r: ranged from0.15
to 0.56, pspin <0.05 in all longitudinal samples and prewired <0.05 in
98.6% (204/207) of longitudinal samples, Fig. 3f).

Collectively, these results provide empirical evidence at the net-
work level that the spatial pattern of nodal CT maturation is linked to
the WM network architecture.

The diffusionmodel of theWM connectome predicts the spatial
maturation of CT
To further understand themechanisms of how thematuration process
of cortical morphology is constrained by the WM connectome, we
proposed a graph-based diffusionmodel to simulate the network-level
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median shown as an inside line, while the lower and upper boundaries of the box
correspond to the 25th and 75th percentiles. The whiskers extend to the minimum
and maximum values within 1.5×IQR, and data points beyond the whiskers are
displayed as outliers.
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axonal interactions during cortical development. The nodal diffusion
processes throughmultiscaleWMedge paths were used to predict the
maturation of cortical CT. Specifically, we first calculated the diffusive
probabilities of a given node to other nodes during a random walk
modeling withmmoving steps (for a toy, see Fig. 4a) to represent the
nodal diffusion profile at the mth neighboring scale (m = 1, 2, 3, …M;
the maximum neighboring scale M was set as the network diameter,
which is the max shortest path length). Increasing moving steps pre-
sent expansion scales of the probed neighborhood, which indicates
local to distributed preferences of information exchange during the
diffusion process. The diffusion profiles of all brain nodes form a dif-
fusive probability matrix that represents the distribution of informa-
tion propagation throughout the whole network. To further
characterize the spatial layout of each diffusivematrix, we classified all
cortical nodes into seven brain communities44 and calculated the
average diffusive probabilities within the same system and between
different systems separately across brain nodes. Notably, we observed
that the diffusion probabilities within the same cortical system were
greater than0.5 at the 1st scale and then decreasedwith the expansion

of neighboring scales (Fig. 4b). This indicates that a lower scale is
mainly involved in more community segregation during propagation.
Then, we trained a support vector regression (SVR) model with nodal
diffusive profiles at each neighboring scale separately as input features
to predict the CT maturation extent from childhood to adolescence
(i.e., t value from Statistical Model I) in a 10-fold cross-validation
strategy52. To evaluate the significance of the prediction accuracy, we
compared the empirical accuracy with two null model tests, including
a spin test and a rewiring test. We found that the diffusive profiles of a
given node could significantly predict its CT maturation extent at
multiple neighboring scales (r1-9 scale: ranged from 0.65 to 0.75, all
pspin < =0.001, all prewired <0.001, Fig. 4c and Supplementary Table S1).
The prediction accuracies were higher at lower neighboring scales.
Additionally, features with high contributions to these predictions
were mainly involved in the diffusion of frontal and parietal nodes
(Supplementary Fig. S4). These resultswerehighly consistent across all
three nodal resolutions (Supplementary Fig. S5 and Supplementary
Tables S2, S3). Overall, our analysis of computational models indicates
that the diffusive characteristics of theWM connectome at the local to
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Fig. 4 | Network-based diffusion model for predicting CT maturation in Sta-
tistical Model I. a Schematic diagram of nodal diffusion processes through mul-
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neighboring scale of a given node i (red). The diffusive profiles of all nodes form the
diffusive probability matrix at each neighboring scale. b The curve of the average
diffusive probability of whole-brain nodes within or between cortical systems. It
illustrates that the within-system diffusion probability was greater than 0.5 at the
first scale and then decreased along neighboring scales. c Significant Pearson
correlations between thepredictedCTmaturation and the observedCTmaturation
(t-value, 1000-node resolution) against 1000 rewired tests (light blue boxes) and
1000 spin tests (deep blue boxes). Boxes represent the IQR with the lower and
upper boundaries correspond to the 25th and 75th percentiles, and an inside line
indicating themedian. The whiskers represent values within 1.5×IQR and individual
points represent outliers. Asterisks denote a significance level at p < =0.001, one-
sided. The scatter plot depicts the Pearson correlation between actual and

predicted CT maturation (r =0.75, p = 5.11 × 10−178, two-sided, linear fit (central line
in red) with a 95% confidence interval (shadows in gray)) at the 3rd neighboring
scale, which exhibited the highest accuracy. d Schematic of the diffusion-based
approach used to identify dominant regions. e Regional distributions of dominant
likelihood (cosine similarity between nodal diffusion profiles and CT maturation
map (t value)) at neighboring scales of 1−9 (toppanels) and the spatial distributions
of dominant regions (pspin<0.05, one-sided, bottom panels). f The conjunction
map of dominant nodes shows the probability of each node being identified as a
dominant node across neighboring scales. g The diffusive probability maps of two
representative dominant nodes separately in the prefrontal (PFC, top panels) and
inferior parietal cortex (IPC, bottom panels) at each neighboring scale. Brighter
color represents a greater diffusive probability. The right panels show the diffusive
probability within or between systems. As the neighborhood scale expands, the
diffusion paths of two nodes spreads from local to distributed communities.
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distance scales support the spatial CTmaturationmap fromchildhood
to adolescence, with a relatively higher effect among nodes within the
same cortical system.

We next attempted to measure the dominant likelihood map for
the spatial constraint between nodal CT maturation and WM connec-
tions and screen out brain nodes that lead the whole brain constraint.
For each node, we calculated the cosine similarity between its diffusive
profiles at the mth (m = 1, 2, 3, …, M) scale and the CT maturation
extentmap fromchildhood to adolescence (t-value in StatisticalModel
I, Fig. 4d). High similarity of a node indicates that its neighboring dif-
fusion preference largely resembled its neighboring distribution of CT
maturation. We observed that the dominant likelihood maps were
highly similar across all nine neighboring scales (Fig. 4e, top panel, and
Supplementary Fig. S6A) with high values in the bilateral prefrontal,
parietal, and temporal regions.These regionswere further identified as
dominant nodes as they had higher similarity than expected by chance
(pspin < 0.05) (Fig. 4e, bottom panel, and Supplementary Fig. S6B). The
conjunction map of dominant nodes across all neighboring scales is
shown in Fig. 4f, where the robust dominant nodes were mainly loca-
ted in the bilateral prefrontal cortex and inferior parietal cortex. This
indicates the leading roles of these regions in shaping the spatial
maturation of whole brain CT. Similar results were found in other
parcellation resolutions (Supplementary Fig. S7).

To further exemplify the diffusion processes of the dominant
nodes at each neighboring scale, we illustrated the diffusive profiles of
the two most robust dominant nodes in the prefrontal region (Fig. 4g,
top panels) and inferior parietal region (Fig. 4g, bottom panels),
respectively. As the neighborhood scale expands, the diffusion of
prefrontal dominators mainly spreads to neighbors within FP and DM
systems, while the diffusion of parietal dominators mainly spreads to
neighbors within DM, DA, and SM systems (Supplementary Fig. S6C).
These diffusion processes were mainly involved in nodes within the
same system at low neighboring scales and in nodes between systems
at high neighboring scales.

Moreover, to further verify these dominant nodes, we also used a
different identification (nodal rank-based) approach53, which defines
dominators as brain regions that show high CT maturation extents in
both themselves and their directly connected neighbors (Fig. 5a).
Using this approach, we ranked nodes based on their CT maturation
extents and their neighbors’meanCTmaturation extents separately in
ascending order and then calculated the mean rank of each node
across both lists. Regions with higher mean ranks (pspin< 0.05) were
identified as the dominant nodes. We found that this dominant like-
lihood map was significantly correlated with our network-based dif-
fusion analysis (Spearman’s r =0.81, pspin< 0.001, Fig. 5b, c), with high
consistency of dominant regions (Fig. 5d).

Validating Statistical Model II, we found that nodal diffusive pro-
files significantly predicted their CT maturation rates (which was
obtained from the GAM analysis) atmultiple neighboring scales across
different ages (all pspin <0.01, prewired <0.001, Fig. 6a and Supplemen-
tary Table S4). Furthermore, we computed the cosine similarity
between nodal diffusive profiles at themth (m = 1, 2, 3,…,M) scale and
the CT maturation rate map, producing the conjunction map of
dominant nodes at each age (Fig. 6b). The bilateral prefrontal cortex
and inferior parietal regions were consistently identified as major
dominant nodes at every age. Thus, our results were robust regardless
of whether Statistical Model I or II was used.

Regional heterogeneous constraints between CT maturation
and the connectome are associated with gene expression
profiles
Next, we sought to explore the genetic associations of the nodal
constraints between the spatial maturation of the CT and WM con-
nectomes during development. We adopted the BrainSpan dataset54

(Supplementary Section 3.1), which contains gene expression samples
of brain tissues from 8 post-conception weeks to 40 years of age, to
evaluate the regional genetic relevance. We selected four gene sets
following Kang and colleagues31, which cover typical maturation
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a Schematic of the method used to identify dominant brain region. A dominant
likelihood distribution map was obtained by a nodal rank-based approach intro-
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procedures involved in bothCTandWM, including axondevelopment,
myelination, dendrite development, and synapse development. We
hypothesized that dominant and non-dominant brain nodes should
exhibit different transcriptomic characteristics. To this end, we first
divided the cortical tissue samples into two categories according to
whether the samples were from dominant nodes in the conjunction
map (Fig. 4f). Then, we calculated the first principal component score
of each gene set’s transcription level and estimated the category dif-
ferences. The statistical significance was calculated by comparing the
empirical difference against null differences generated by randomly
resampling the same number of genes 1000 times from the remaining
genes9,55,56. We found divergent transcriptomic trajectories between
dominant and non-dominant regions in all four maturation processes
from childhood to adolescence (Fig. 7a), and the transcription level in
dominant regions was significantly higher than that in nondominant
regions for dendrite (p = 0.014) and synapse development (p = 0.002)
but significantly lower for axon development (p <0.001) and myeli-
nation (p <0.001) (Fig. 7b). This result indicates that gene expression
provides support for the microstructural differences in neurodeve-
lopment between dominant and non-dominant regions, potentially
contributing to the non-uniform degree of constraints between CT
maturation and the WM pathways.

Considering that the BrainSpan dataset only contains 11 sampling
neocortex areas, we also validated the regional gene expression rele-
vance by using Allen Human Brain Atlas (AHBA) datasets57 Supple-
mentary, Section 3.2. After preprocessing with the abagen (0.1.3)
toolbox58,59, amatrix of gene expression profiles was generated (111 left
brain regions × 8631 gene expression levels). Then, we identified the
association between the dominant likelihood map and each gene
expression map using Pearson’s correlation and spin tests (1000
times). A total of 457 genes showed a positive correlation, and 619
genes showed a negative correlation (pspin <0.05, FDR corrected,
Supplementary Table S5). Next, we performed Gene Ontology
enrichment analysis (Supplementary, Section 3.3) on these two gene
sets using the online tools of ToppGene Suite (https://toppgene.
cchmc.org/)60 and REViGO (http://revigo.irb.hr) to select the most
meaningful GO terms. We found a significantly correlated gene list
with positive correlations mainly enriched in learning or memory and
synapse organization (biological process) as well as glutamatergic
synapse, neuron spine, and somatodendritic compartment (cellular
component) (all P <0.05, FDR corrected, Fig. 7c, d) and negative cor-
relations enriched in the generation of precursor metabolites and
energy process (biological process) and myelin sheath components
(cellular component) (all P <0.05, FDR corrected, Supplementary
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Fig. S8). The detailed enrichment analysis results are shown in Sup-
plementary Tables S6, S7.

Sensitivity and Replication Analyses
At present, diffusion MRI-based tractography still struggles to accu-
rately reconstruct ultrashort WM fibers61,62. To assess the impact of
ultrashort streamlines, we first measured the average fiber length
between each node and its directly WM-connected neighbors across
different nodal parcellations and observed mean values exceeding
40mm in all three resolutions (mean length: 54.27 ± 14.35mm for 219
nodes, 47.65 ± 16.65mm for 448 nodes, and 41.00 ± 18.84mm for 1000
nodes). This indicates that our network models contained only a few
ultrashort streamlines, which may have few impacts on our findings.
Additionally, according to recent evidence from superficialWM tracts63,
we excluded streamlines shorter than 20mm63 for whole-brain tracto-
graphy and repeated the diffusion model analysis. We found highly
consistent results, indicating that the nodal diffusive profiles still sig-
nificantly predicted nodal CTmaturation extent (t value from Statistical
Model I) at multiple neighboring scales (r1-9 scale: ranged from 0.64 to
0.76, all pspin<0.001, all prewired <0.001, Supplementary Fig. S9).

Considering that the diffusion weighting scheme of the discovery
dataset only included b-values of 1000, which could affect the

effectiveness of WM tractography64, we used another independent
diffusion imaging dataset with multi-shell diffusion gradients that
contain high b-values shells fromHCP-D40 to reconstruct the individual
WM network and regenerate the group backbone. The new backbone
closely resembled the backbone in our main result. At the global level,
the network density of the new backbone (2.38%) was highly similar to
that of the backbone in ourmain results (2.30%). At the nodal and edge
levels, the nodal distribution of degree centrality and the edge matrix
between two WM backbones both exhibited high similarities (nodal
degree: r =0.79, pspin <0.001; edge matrix: r =0.75, P < 0.001). Using
this new backbone, we found results highly consistent with our main
findings. Specifically, nodal CT maturation extents were significantly
correlated with their directly connected neighbors (adjusted r =0.76,
pspin <0.001, prewired < 0.001, Supplementary Fig. S10A). Using the
network-based diffusion model, the spatial maturation of CT was also
predicted by the diffusion properties of the WM network (r1-8 scale:
ranged from 0.69 to 0.78, all pspin <0.001, prewired <0.001, Supple-
mentary Fig. S10B and Supplementary Table S8).

To evaluate the reproducibility of our findings, we further repli-
cated all main analyses using the cross-sectional, multi-site replication
dataset from HCP-D. The site item was set as a random effect in both
linear mixed models (the child group with 98 participants aged
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Fig. 7 | Association between regional heterogeneous constraints and gene
expression profiles. a Transcriptomic trajectories between dominant regions
(solid line) and non-dominant regions (dashed line) in four maturation processes.
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to the conjunctionmap of Fig. 4f. b Transcriptomic differences between dominant
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lower and upper boundaries of the box correspond to the 25th and 75th percen-
tiles. The whiskers extend to the minimum and maximum values within 1.5×IQR,
and individual data points beyond the whiskers are displayed as outliers. Asterisks
denote a significance level at p <0.05 (p(dendrite)=0.014, p(synapse develop-
ment) =0.002, p(axon development) <0.001, and p(myelination) <0.001, one-
sided). c Volcano plot depicts Gene Ontology (GO) results for Biological Processes
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5.58−9.92 y; the adolescent group with 203 participants aged
10.00−14.00 y, Statistical Model I) and GAMmodels (Statistical Model
II) to control for site effects. The results were highly consistent with
those obtained using the discovery dataset: (i) several heteromodal
areas including dorsolateral prefrontal regions and lateral parietal
regions exhibited the most pronounced cortical thinning (Supple-
mentary Fig. S11A); (ii) CTmaturation extent (t value) of a node showed
a positive correlation with the mean maturation extent of its directly
WM connected neighbors (adjusted r = 0.62, adjusted rexcluded = 0.46,
and adjusted rregressed =0.62), and the empirical correlation exceeded
the values in null models (all pspin< 0.001 and all prewired <0.001,
Supplementary Fig. S11B-D); (iii) nodal CT maturation rate was sig-
nificantly correlated with the mean of its directly WM connected
neighbors at each age point (r: ranged from 0.41 to 0.66, all
pspin <0.001 and all prewired <0.001, Supplementary Fig. S11E); (iv) the
diffusion profiles of the WM network at multiple neighboring scales
also predicted the spatial maturation of CT (r1-4 scale: ranged from 0.60
to 0.66, all pspin <0.05, prewired <0.001, Supplementary Fig. S11F and
Supplementary Table S9); and (v) dominant nodes mainly resided in
the lateral parietal regions (Supplementary Fig. S11G). Taken together,
these findings from an independent replication dataset provide
replicable evidence that theWMnetwork structure shapes the cortical
maturation from childhood to adolescence.

Discussion
The present study presents the constraints of the WM network archi-
tecture on the coordinated maturation of regional CT from childhood
to adolescence and their associations with gene expression signatures.
Specifically, we showed that the morphological maturation of cortical
nodes is significantly correlatedwith that ofWM-connected neighbors.
Moreover, we proposed a network-based diffusion model to predict
regional cortical maturation from the WM connectome architecture.
Using the WM propagation profiles of brain nodes, this model sig-
nificantly predicted CTmaturation, highlighting the critical role of the
WM network architecture in shaping the maturational patterns of
cortical morphology. Importantly, these constraints were regionally
heterogeneous, with the largest constraints located in frontoparietal
nodes, and were associated with the gene expression profiles of
microstructural developmental processes. These results were largely
consistent across three cortical parcellations and are highly repro-
ducible across independent datasets. Taken together, these findings
provide insights into the network-level mechanisms that support the
maturation of cortical morphology.

Numerous previous studies have documented that the human
brain undergoes remarkable refinements during childhood and ado-
lescence, such as cortical thinning, area expansion, and WM
myelination2,4,7,12,65. These multifaced gray matter and WM changes
have been proven to be intrinsically linked with each other at the
regional level. For example, in early childhood, the spatial pattern of
cortical surface area expansion during development is highly similar to
the myelination of underlying cortico-cortical tracts66. In children and
adolescents, Jeon et al.21 reported a significant correlation between the
rate of CT decrease and the rate of FA increase in WM tracts at local
gyri of the frontal lobe. Ball et al.67 observed a shared developmental
process in CT and structural connectivity during childhood and ado-
lescence. In addition, prior studies show that homologous cortical
regions tightly connected by richWM tracts show high CT maturation
couplings23,25. At the microscale level, cortical morphology changes
during maturation are thought to have various biological origins,
including synaptic pruning, increased axon diameter, and
myelination12,68. Seeking a unified original model for the whole-brain
cortical changes is difficult since even within the ventral temporal
cortex, thinning of different brain regions seems to be due to dis-
tinguished factors68. Here, we address this issue with a perspective on
brain network modeling. We showed that the morphology maturation

of cortical nodes is well represented by that of their WM-connected
neighbors during the transition from childhood to adolescence even
after excluding the spatial proximity effect (Fig. 2d Supplementary
Fig. S3). It was highly reproducible at different age points, within
individuals, and in an independent dataset (Fig. 3d, f, and Supple-
mentary Fig. S11). Such a network-level association is an important
extension of previous developmental theories that support cortical
thinning across brain development.

TheWMnetwork-based corticalmaturation couldbe explainedby
several factors. First, animal studies revealed that cortical regions that
are structurally connected by axon projections are more likely sharing
similar cytoarchitectures, such as neuronal density and laminar
differentiation69,70. Moreover, higher cytoarchitectural similarity
among regions tends to higher cortical coordinated maturations71,72

among neighboring nodes in the brain WM network. Second, a recent
study using 19 different neurotransmitter receptors/transporters, such
as dopamine and glutamate, found that structurally connected cortical
regions usually show greater neurotransmitter receptor similarity73.
Therefore, these regions may be more inclined to be coregulated by
similar physiological processes during development74,75. Third, direct
WM connections facilitate ongoing interregional communication,
enabling these regions to exhibit strong spontaneous neuronal activity
couplings76, which indicates the natural preference for the regional
coordination of functional development. This also coincides with
Hebbian learning rule, where neurons that fire synchronously tend to
form or consolidate connections between them77,78. Additionally, WM
network-based constraints on cortical morphology exist extensively in
adult brains. For instance, Gong et al. suggested that approximately
40% of edges in the adult CT covariance network show matched WM
connections79. This finding also reflects the close relationship between
cortical morphology and the WM network. Such covariation between
cortical regions in the adult brain is thought to be associatedwith their
mutual trophic support by axonal pathways80. However, whether such
cortical covariations originate from the shared constraints of WM
connections during development is still an open question. Future
studies that combine cortical covariation network models and devel-
opmental WM connectomes could help address this important ques-
tion. In neurodegenerative diseases, including schizophrenia,
dementia, and Parkinson’s disease, studies have also found that the
disease-related cortical deformation pattern across brain regions is
conditioned by the WM network53,81,82.

Notably, in this study, we proposed a network-based diffusion
model to explore the constraint ofWMonCTmaturation.Wehighlight
that nodal diffusion profiles of the WM connectome could accurately
predict the maturation pattern of regional CT (Figs. 4c, 6a). From a
physical transport perspective, the axonal microenvironment can be
regarded as a porous medium that makes diffusion processes within
brain tissues extremely critical for delivering oxygen and glucose
during neuron metabolism83. Meanwhile, diffusion of chemical neu-
rotransmitters at synaptic clefts along axons is essential for forming
postsynaptic responses during intercellular communications84. At the
macroscopic scale, network-based models have been proposed to
simulate the consequences of interregional diffusive spread in latent
topological space throughout the brain connectome. In neurodegen-
erative diseases (e.g., Alzheimer’s disease), these models showed
excellent prediction abilities for the spatial atrophy pattern of the
cortex by capturing disrupted transport of trophic factors or accu-
mulated spread of toxicmisfolded proteins85,86. Based on brain images
of nine very prematurely born infants, Friedrichs-Maeder et al.
employed a diffusion model to explore the relationship between WM
connectivities and cerebral MR measurements such as T1 relaxation
time87. They reported that early maturation in the primary sensory
cortex serves as a source to gradually propagate into the higher-order
cortex. In our study, considering the intricate biological relevance
between brain WM and cortical morphology12,68, we used a simple
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randomwalkmodel to depict the complex networkdiffusive processes
of brain nodes. This model can concisely present the local to dis-
tributed supports of the structural connectomeon corticalmaturation
from childhood to adolescence. These nodal diffusive features are
effectively integrated by a multivariable machine learning model to
represent nodal cortical maturation. Notably, this model showed the
significance of indirectly WM-connected neighbors for constraining
nodal morphology maturation, which emphasizes the necessity of
employing a network-level model to capture this relationship. The
contribution from indirect neighboring scales is reasonable because
cortical communications between brain regions inherently contain
high-order components to support information exchanges between
topologically distant nodes88,89. In addition, our results provide a
detailed description of how these nodes interact with other remote
brain nodes through higher-order topological connections during
cortical development. These indirect WM neighbors were primarily
located within nearby cortical communities (Fig. 4b, c) that share
common maturation processes to support morphological integration
during cortical development90,91. To further examine the association
between the WM network topology and cortical maturation, we
quantified the correlation between commonly used nodal attributes of
the WM network and nodal CT maturation (Supplementary Sec-
tion 2.2). We selected three nodal topological metrics to measure the
capacity of information transmission in common communication
dynamics92,93, including nodal efficiency, the nodal mean first passage
time, and the nodal participation coefficient. We found a significant
negative correlation between the nodal CT maturation extent (Statis-
tical Model I) and the nodal mean first passage time (r = −0.22,
P = 8.52 × 10−13, prewired <0.001 and pspin= 0.009) and a significant
positive correlation between the nodal CT maturation extent (Statis-
tical Model I) and the nodal participation coefficient (r = 0.21,
P = 6.52 × 10−12, prewired < 0.001 and pspin <0.001). The correlation
between the nodal CT maturation extent and nodal efficiency was not
significant (r = 0.12, prewired =0.738 and pspin =0.174). These findings
indicate that brain nodes with higher WM network integration cap-
abilities tend to exhibit greater cortical thinning during development,
establishing the links between the WM network topology and cortical
maturation.

Our results also showed that the constraints of the WM network
on CT maturation are spatially heterogeneous (Figs. 4e, 6b). Region-
ally, dominant nodes in the heteromodal area, especially within and
between FP and DM networks, show the strongest spatial constraints.
Previous neuroimaging studies have revealed that FP andDMnetworks
display dramatic cortical thinning from childhood to adolescence1,8.
During the sameperiod, brainWMfractional anisotropy and functional
connectivity also show prominently increased tendencies within these
networks94,95. Our results imply that theWMconstraints on the cortical
maturation of the heteromodal area likely influence the major pattern
of whole-brain cortical thinning. Compatible with our findings of
connectome-morphology constraints, structure‒function association
studies have also shown age-related increases in the heteromodal area
during youth, which are associated with individual executive
performance96. These multifaced heteromodal refinements could
support the rapid enhancement of high-order cognitive and social
capabilities such as working memory and reasoning95,97.

By employing transcriptome imaging analyses of data from a
developmental gene expression dataset, we found that dominant
nodes in the heteromodal area show different transcriptional patterns
compared with non-dominant brain nodes. Specifically, dominant
regions exhibited higher gene expression levels primarily involved in
the maturation of gray matter morphology, including synaptic and
dendritic development, and lower expression levels of genes asso-
ciated with WM maturation, including axon and myelin development.
This coincides with findings from histological and MRI brain studies
that heteromodal regions have higher synaptic density and lighter

myelination than other regions in childhood and adolescence28,30,
which induces prolonged maturation of the higher-order cortex dur-
ing adolescence to support the optimization and consolidation of
synaptic and axonal connectivity1,28,30,65. The non-uniform constraints
of WM pathways on CT maturation may be associated with the
underlying heterochronous sequence of microstructural develop-
ment. During adolescence, the heteromodal cortex undergoes more
synaptic pruning and reorganization of synapses and dendritic spines
than the primary cortex to respond to the demands of cognitive
development and environmental experiences11,30. At the same time, the
WM development in the heteromodal cortex is still incomplete com-
pared to primary cortex28,65,98. To consolidate learning and memory99,
the underlying WM pathways in heteromodal regions optimize neural
impulse conduction through myelination and increased axon
diameter28,100,101. For instance, the transmission speed of long-range
tracts such as the superior longitudinal fasciculus and temporo-
parietal aslant tract that link distributed association cortical regions,
increases by approximately twofold102. These multifaceted alterations
in cortical morphology andWMconnectivity in dominant nodes play a
crucial role in establishing interregional processing and promoting
brain-wide coherenceof neural activity101,103,104. Likewise, we conducted
GO enrichment analysis with the AHBA datasets, which is the most
complete gene expression dataset available on the human brain to
date, and found that the nonuniform degree of constraints wasmainly
related to biological processes and cellular components involved in
learningormemory, synapse organization, glutamatergic synapse, and
neuron spine. These gene-related processes are involved in the spatial
thinning of CT during childhood and adolescence28,29. As the most
abundant synapse type in the neocortex, glutamatergic synapses are
primarily responsible for the transport of excitatory transmitters,
which are crucial for regulating the transmission and processing of
information among brain regions84. Meanwhile, neuron spines on
dendrites serve to receive various kinds of excitatory inputs from
axons and are considered crucial for brain circuit wiring distribution
and circuit plasticity105,106. Disruptions of these synaptic structures are
important substrates of pathogenesis inmultiple neurodevelopmental
diseases, especially those with deficits in information processing, such
as autism105,107. There is also another recently emerged approach to
identifying genetic influences on brain structure by integrating multi-
center brain MR images with genome-wide data from tens of thou-
sands of individuals. Researchers have identified common genetic
variations and biological pathways that affect corticalmorphology and
WM architecture. Interestingly, Grasby et al. found that positive phe-
notypic correlations were generally observed between spatially adja-
cent brain areas in termsof regional CT, which also indicates a physical
constraint of the genetic influences of corticalmorphology108. Brouwer
et al. utilized longitudinal images and genotyping data covering the
lifespan, revealing that the change rate of corticalmorphology is under
genetic regulation, and such gene associations exhibit age-specific
effects39. These studies highlight the potential for future utilization of
large-sample multimodal brain developmental images combined with
genome-wide data to provide deeper insights into the genetic
mechanisms underlying the interplay between brain gray mat-
ter and WM.

Several issues merit further consideration. First, although dMRI-
based deterministic tractography used here is currently a common
approach for reconstructing WM tracts in vivo, it is still inherently
limited, especially for depicting cross-fibers109,110. Although probabil-
istic tractography approaches exhibit high sensitivity for this issue111,
they result in excessive false positive connections110. Second, diffusive
processes during axonal transport are proven directional17. However,
in vivo inference for the direction of WM fibers is still extremely dif-
ficult with tractography-based methods. Future investigations com-
bining diffusionmodels with animal connectome bymolecular tracers
would reveal a directed network constraint mechanism. Third, dMRI is
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an indirect way of assessing the WM microstructure. There still exist
many limitations in characterizing intra-axonal properties, particularly
at lower diffusion weights, and the interpretation of development-
related changes in specificmetrics to a precisemicrostructure event is
also difficult62,112. Additionally, there is an ongoing debate regarding
the appropriate metric for accurately assessing WM connectivity
strength in vivo62,113. Thus, in the present study, we employed binary
networks to capture the backbone of the WM connectome. This
approach also simplifies the GAManalysis in part because therewas no
need to consider the age-dependent interaction of edge strength and
constraint degree. In the future, advanced quantitative MRI approa-
ches, such as synthetic MRI, magnetization transfer imaging, and
multiexponential T2 imaging, could be utilized to better capture the
microstructural properties of brain tissues and further understand the
relationship between WM network development and cortical mor-
phological maturation. Fourth, the developmental gene data from
BrainSpan only covered 11 areas of the neocortex54 and thus can only
provide a rough exploration of differences in gene expression between
dominant and non-dominant nodes. We further validated this result
using the AHBA datasets57, but it was sampled from only six post-
mortem adult brains. Future studies with gene expression data from
widespread cortical regions in a large sample of children and adoles-
cents are important for connectome-transcriptome association ana-
lysis. Fifth, due to the mixed design used to collect our data, the
developmental effects estimated from the group-level analysis may
differ from those observed using pure longitudinal data37,114,115. While
we validated our findings using longitudinal data from repeated scans
within the same participants and obtained consistent results, our
findings are limited by the relatively short follow-up periods. In the
future, the utilization of longitudinal data with multiple time points
and larger sample sizes will be crucial for accurately characterizing
individual-level developmental patterns from childhood to adoles-
cence. In addition, our current findings did not allow inference of the
causal relationship between the development of the WM network and
CT maturation. Implementing the presented methodology using
longitudinal data with multiple, densely sampled time points and lar-
ger cohorts might provide valuable insights to address this crucial
question. Furthermore, utilizing normativemodels to fit growth charts
on a larger sample116 will be highly important for providing a detailed
representation of WM network-constrained cortical maturation.
Finally, we showed the constraints of the WM network on cortical
morphology maturation during typical development. Previous studies
have documented both abnormal cortical maturation and WM con-
nectomes in individuals with neurodevelopmental disorders such as
autism117 and attention-deficit/hyperactivity disorder118. In the future, it
would be desirable to examine how the WM connectome shapes cor-
tical morphology in these atypical populations.

In conclusion, using neuroimaging, connectomics, tran-
scriptomics, and computational modeling, we found that the matura-
tional pattern of cortical morphology from childhood to adolescence
is structurally constrained by the large-scale WM connectome archi-
tecture and that such constraints are predominantly located in fron-
toparietal nodes and are linked with the expression of genes
associated with microstructural developmental processes. Thus, our
results provide mechanistic insights into the maturation of cortical
morphology during development.

Methods
Participants and data acquisition
We performed analyses in two independent datasets. After quality
control, the discovery dataset included a longitudinal cohort of 314
participants (aged 6−14 years, 161 males and 153 females, sex was self-
reported) with 521 structural and diffusion MRI scans from the Beijing
Cohort in Children Brain Development project119. Among all partici-
pants, 158 underwent a single scan, 105 underwent two scans with a

mean time interval of 1.16 years, and 51 underwent three scans with an
average interval of 0.99 years. Structural and high angular resolution
diffusion imaging (HARDI) diffusion MR brain images for each subject
were scanned at Peking University using a 3 T Siemens Prisma scanner.
Informed written consent was obtained from all participants and at
least one parent/guardian, consistent with the guidelines of the Ethics
Committee of Beijing Normal University at Beijing Normal University,
P. R. China. The replication dataset included a cross-sectional cohort of
301 participants (aged 5−14 years, 183 females and 118 males, sex was
self-reported) selected from the Lifespan Human Connectome Project
in Development (HCP-D)40. Participants were recruited across four
imaging sites, and details on imaging protocols can be found in120.

MRI Data Preprocessing
For the discovery dataset, individual cortical reconstruction was per-
formed using standard longitudinal processing in the FreeSurfer v6.0
image analysis suite. This process starts with routine steps (recon-all)
including intensity normalization, nonbrain tissue removal, tissue
segmentation, automated cortical reconstruction, and surface
parcellation42,121–124. Then, longitudinal streams were performed,
including the creation of an unbiased surface template (recon-all
-base) and regenerating the cortical surface to reduce variabilities
across time points (recon-all -long)125,126. Notably, to improve the
quality of nonbrain tissue removal, we used HD-BET127 (https://github.
com/NeuroAI-HD/HD-BET), an artificial neural network-based tool, to
automatically extract brain tissue images that were further used to
replace the brainmask.mgz files in FreeSurfer pipelines. Next, we
constructed a custom registration template by averaging all available
subjects’ cortical surfaces. The atlas in the standard fsaverage space
was registered to the newcustom template and then registered to each
subject’s surface space to be used to obtain regional CT measure-
ments. All images were visually inspected and manually edited and
corrected where needed to ensure the correctness of gray matter and
WM boundaries and improve the quality of the output. For diffusion
MR images, we employed the standard preprocessing processes in the
MRtrix 3.0.1 software128. Images were denoised, Gibbs ringing
artifacts129 were removed, and eddy current-induced distortions, head
movements, signal dropout, and B1 field inhomogeneity were cor-
rected using MRtrix 3.0.1128,130–133. Notably, our dataset acquired addi-
tional dual-echo field maps for susceptibility-induced EPI distortion
correction. Since such a correction approach is not included in the
MRtrix, we fed brain images after eddy correction into the FUGUE
process for SIEMENS data in FSL 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FUGUE/Guide#Making_Fieldmap_Images_for_FEAT).

For the replicationdataset, theT1-weighteddatawent through the
HCP preprocessing pipeline including the PreFreeSurfer, FreeSurfer,
and PostFreeSurfer pipelines134. We obtained the individual CT in a
common 32k_fs_LR space from the publicly available dataset. For dif-
fusion MR images, we employed the same standard preprocessing
steps in theMRtrix 3.0.1 software128 as the discovery datasets.With one
exception, the EPI distortion was corrected by employing TOPUP in
MRtrix since the HCP-D dataset contained paired phase-encoded
field maps.

Estimation of regional CT and WM networks
Each participant’s cortex was parcellated into 1000 regional nodes
with approximately equally sized based on the modified Desikan-
Kiliany atlas42,43 and verified at 219-node and 448-node parcellations.
The CT of each brain node was estimated by using FreeSurfer
v6.0 software. Byusing theDSI Studio 2018 software,we reconstructed
the whole brain anatomical streamlines using native diffusion MR
images for each individual by employing generalized q-sampling
imaging (GQI)-based deterministic streamline tractography49,135 with
gray-white boundary as seed voxels. Two cortical regions were con-
sidered structurally connected if there exists at least one streamline
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with two end points located separately in them136,137. After obtaining
the individual WM network, we further implemented a consensus
approach to generate the binary group-level WM connectome50.

Analysis of CT maturation from childhood to adolescence
We explored CT maturation using the following three distinct statis-
tical models. (i) To estimate the maturation of CT from childhood to
adolescence, we applied a mixed linear analysis with sex included as a
covariate and group included as the main effect for each brain node
(Statistical Model I). The model was defined as follows:

CTij =β0 +bi + ðβgroup + bgroup,iÞ � groupij + βsex � sexi + εij ð1Þ

where CTij is the CT of participant i at the jth scan, βgroup represents
the fixed group effect of participant i, bgroup,i is the random effect, and
εij is the residual. The t statistics from the group term were used to
represent the CT maturation extent of brain nodes. Greater positive t-
values indicated more significant cortical thinning. (ii) To further
validate whether the associations between the WM network archi-
tecture andCTmaturationwerepresent throughout the ages of 6 to 14
years, we considered age as a continuous variable using semipara-
metric GAMs33 to flexibly investigate linear and nonlinear relationships
between CT and age (Statistical Model II). For each cortical node, the
model was defined as follows:

CTij =β0 +β1 � f 1 ageij
� �

+β2 � f 2 participantð Þ+ β3 � sexi + ε ð2Þ

where the CT of participant i at the jth scan as the dependent variable,
age as a smooth term, sex as a linear covariate, and participant as a
random effect. Thin plate regression splines were used for the
smoothing basis and the residual estimates of maximum likelihood
(REML) method was used to estimate the smoothing parameter. Next,
we calculated the first derivative of the age smooth function (Δ cortical
thickness/Δ scan age) to characterize the CT maturation rate. (iii) To
assess whether the association of the WM network and CT maturation
also exists at the individual level, we estimated the individual-level CT
maturation rates using the longitudinal MRI scan data from each
participant in the discovery dataset (Statistical Model III). The three
repeated scans from a same participant were split into two continuous
pair-scan combinations. Therefore, a total of 207 longitudinal samples
were included in this analysis. For each brain node, the CT maturation
rate was defined as follows:

CT maturation rate=
CTi,j + 1 � CTi,j

scan agei,j + 1 � scanagei,j
ð3Þ

where CTij is the CT of participant i at the jth scan. Negative values
indicate cortical thinning while positive values indicate cortical thick-
ening with development.

Association between CT Maturation and the WM connectome
To test whether regional maturation of CT was associated with its
direct WM connections, we first assessed the across-node relationship
between the CT maturation extent (t-value between child and adoles-
cent groups, Statistical Model I) of a node and its directly connected
neighbor nodes by a model as follows:

T̂ i =
1
Ni

XNi

j≠i, j = 1

Tj ð4Þ

In thismodel, T̂ i represents the estimatedCTmaturation extent of
node i according to its directly connected neighbors. Tj represents the
CT maturation extent (t values as mentioned above) of the jth neigh-
bor, and Ni is the number of directly connected neighbors of node i.

Specifically, we used the group-level binary WM network to define the
WM-connected neighbors of each cortical node. Then, we calculated
the spatial correlation between the empirical CT maturation extent
(nodal t-value) and the estimated values (T̂ i). The correlation coeffi-
cient was used to represent the association extent between the WM
edges and the nodal maturation pattern of CT. We used a similar
process to quantify the association degree for each year of CT
maturation rates obtained through GAMs (Statistical Model II). The
GAMs were performed using the mgcv (1.8.35) R package.

To test whether the association of the WM network and CT
maturation was present at the individual level, we conducted an ana-
lysis utilizing longitudinal data from repeated scans within each par-
ticipant (Statistical Model III). We first calculated the annual rate of CT
change for each individual to characterize their unique cortical
maturation patterns (see Analysis of CTMaturation fromChildhood to
Adolescence). Next, we reconstructed the individual WM network for
each participant from their first scan in each pair-scan combination.
Finally, as in the group-level analysis, we assessed the across-node
relationship between the annual nodal CT maturation rate and the
mean of its directly connected neighbors in each individual’s WM
network by a model as follows:

dCT maturation ratei =
1
Ni

XNi

j≠i, j = 1

CT maturation ratej ð5Þ

Here, dCT maturation ratei represents the estimated CT matura-
tion rate of node i according to its directly connected neighbors.
CT maturation ratej represents the CT maturation rate of the jth
neighbor, and Ni is the number of directly connected neighbors of
node i. Then, we calculated the spatial correlation between the
empirical CT maturation rate and the estimated values. These corre-
lation coefficients were used to represent the strength of the
individual-level association between the WM network and CT
maturation.

Null models
We tested the observed spatial correlation against two baseline null
models. In the first null model, we used a spatial permutation test
(“spin test”) to explore whether the observed correlation was specific
to the actual CT maturation pattern rather than due to the spatial
autocorrelation of CT maturation45,46. Specifically, we first recorded
the spherical coordinates of centroids for each parcel in the Cammoun
atlas43. Then, we randomly rotated the parcels while maintaining spa-
tial autocorrelation and reassigned node values to the nearest parcels.
This procedure was repeated 1000 times to create surrogate brain
maps. The p-value was calculated as the fraction of correlations in null
models that exceeded (for positive correlations) or were weaker than
(for negative correlations) the observed correlation.

In the second null model, we evaluated whether the observed
correlation is determined by the empirical WM network topology
rather than the basic spatial embedding of the WM network (such as
the distribution of node degree and edge length), we used a rewired
null model (“rewired”)51. Specifically, we first divided edges into dif-
ferent bins according to their Euclidean distance. To preserve the
degree sequence and approximate edge length distribution of the
empirical WM network, edge pairs were randomly swapped within
each bin. Finally, 1000 surrogate networks were generated by
repeating this procedure. The p-value was calculated as the fraction of
correlations in null models that exceeded (for positive correlations) or
were weaker than (for negative correlations) the observed correlation.

Network-based diffusion model
We proposed a diffusionmodel by combiningmth-order randomwalk
processes with an SVR method to determine whether the diffusion
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properties of theWMnetwork could predict thematuration pattern of
CT. Specifically, for an adjacency matrix A, the probability of node i
transferring to its neighbor j during one step is Aij=di (modeled by a
random walker moving one step along the edges of the WM network),
wheredi is the structurally connected neighbor number (node degree)
of node i. Thus, the transition probabilities of the WM network were
represented by the transition matrix P. P was defined as:

P =D�1A ð6Þ

Where D is the node degree diagonal matrix. The initial distribu-
tion of random walkers is represented in p0, where the diagonal ele-
ments are 1 and the other values are equal to 0. Therefore, when these
randomwalkersmovem steps (m = 1, 2, 3,…), their distribution can be
described as:

P mð Þ=p0P
m ð7Þ

The sum of elements in each row of the distribution matrix is 1,
reflecting the diffusion preference of each node with its mth-order
neighborhoods. Finally, we averaged the outgoing and incoming
random walker distribution matrix as a symmetrical diffusion con-
nectivity matrix at each step to represent the bidirectional diffusion
properties between any two nodes. Each row of this matrix repre-
sents the diffusive profile at the mth neighboring scale of each
cortical node.

Next, we trained the SVR model with the diffusion profiles of a
brain node separately at each neighboring scale as input features to
predict the degree of nodal CT maturation. A total of M models
(where M is the maximum neighboring scale) were generated to
evaluate thepredictive ability of each diffusion scale. Eachmodel was
trained using a 10-fold cross-validation strategy with a linear ker-
nel. The coefficient of training error, that is, the C parameter, was
selected from among 16 values [2−5,2−4, …,29, 210] as in a previous
study52. The Pearson correlation coefficient between the empirical
and predicted CT maturation extents was calculated as the predic-
tion accuracy. Twonullmodelswere used to evaluate the significance
of prediction accuracy (see Null Models). These analyses were per-
formed using the LIBSVM (3.25) toolbox (https://www.csie.ntu.edu.
tw/~cjlin/libsvm/).

Identifying the dominant regions during development
To further identify the dominant regions, which play more important
roles in leading cortical development, we calculated the cosine simi-
larity between the CTmaturationmap and the nodal diffusion profiles
at each random walk step. The statistical significance of the spatial
similarity for each brain region was assessed by using a spin test (1000
times, see Null Models). Regions with significantly greater spatial
similarity than the regional correspondence induced by the spatial
autocorrelation of CT maturation (pspin <0.05) were identified as the
dominant regions during development. This analysis was conducted at
each neighboring scale. To identify robust dominant nodes across
neighboring scales, we generated a dominant node conjunction map,
which represents the probability of each node being recognized as
dominant across all scales.

We further replicated our results using the other method intro-
duced by53, which aims to find some brain regions that show high
maturation extents in both themselves and their directly connected
neighbors. To identify such regions, we ranked the nodes’ CT
maturation extents and their neighbors’ mean CT maturation extents
in ascending order. For each node, we calculated themean rank across
both lists. Regions with significantly higher ranks (pspin <0.05) were
identified as the dominant regions.

Analysis of the relationship between heterogeneous con-
nectome constraints on cortical maturation and gene expres-
sion profiles
We used developmental gene expression data from BrainSpan54 to
evaluate whether there were differences in the expression levels of
genes associated with several neural development events between
dominant and non-dominant regions. We divided tissue samples into
dominant and non-dominant categories according to their anatomical
location (from 11 areas in the neocortex) and arranged them in
ascending order based on age to explore the temporal characteristics
of gene expression. Next, four typical maturation gene sets31 were
selected (covering axon development, myelination, dendrite devel-
opment, and synapse development) to evaluate whether there were
differences in transcription levels between dominant and non-
dominant regions. For each gene set, we performed principal com-
ponent analysis on the gene expression matrix to calculate the first
principal component score of each gene set’s transcription level in
dominant and non-dominant regions. Then, we calculated the differ-
ence between themeans of the first principal component scores of the
two categories of brain regions. The statistical significance of the
categorydifferenceswas estimated as inprevious studies9,55,56. First, we
computed the empirical difference in the transcription level of a target
gene set (themean of the first principal component scores of one gene
set across brain regions) between the two categories of brain regions.
Then, we randomly sampled a number of genes equal to those in the
target gene set 1000 times from the remaining genes in the BrainSpan
datasets to generate 1000 surrogate sets. The difference in the tran-
scription level of each surrogate gene set between the two categories
of brain regions was calculated to form a null distribution. Finally, we
compared the empirical transcription level differences against the null
distributions to obtain statistical significance. Notably, the category of
brain regions remained unchanged throughout the entire process. To
further validate the relationship between spatial heterogeneity con-
straints and cortical gene expression levels at the whole-brain level, we
performed Pearson correlation analysis with AHBA57 datasets com-
bined with Gene Ontology enrichment analysis. Specifically, we first
identified the association between the dominant likelihood map and
each gene expression map using Pearson’s correlation. To strictly
account for the spatial autocorrelation138, we determined the sig-
nificance level of the spatial similarity by comparing the empirically
observed correlation to a null distribution obtained by 1000 spatial
permutation tests (“spin test”)45,46 in which surrogate maps of brain
phenotype were generated while maintaining the spatial autocorrela-
tion properties of the original map. Only genes demonstrating sig-
nificant correlations (pspin <0.05, FDR corrected) were retained for
subsequent GO enrichment analysis60.

Detailed information about participants, image acquisition, data
preprocessing, and data analyses are further described in Supple-
mentary Materials.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
For the Discovery Dataset (CBD dataset) and the Replication Dataset
(HCP-D), all data required for reproducing our findings have been
publicly available, including the individual regional cortical thickness
matrices, structural connectivity matrices, the intermediate results
during analysis, and the data for visualizing main figures. They are
stored in a publicly accessible cloud repository (https://github.com/
Xinyuan-Liang/SC-shapes-the-maturation-of-cortical-morphology).
For the Discovery Dataset (CBD dataset), the raw neuroimaging data
used in this study are available upon request from the corresponding
authors. For the Replication Dataset (HCP-D), raw image scans are
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publicly available at https://nda.nih.gov/. The BrainSpan Atlas dataset
is publicly available at http://brainspan.org/static/download.html. The
AHBA dataset is publicly available at https://human.brain-map.org/
static/download. Source data are provided with this paper.

Code availability
Softwarepackages used in thismanuscript includeMRtrix 3.0.1 (http://
www.mrtrix.org/), FSL 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),
ANTs 2.3.4 (https://github.com/ANTsX/ANTs), HD-BET (https://github.
com/NeuroAI-HD/HD-BET, Jun 16, 2021), FreeSurfer v6.0 (https://
surfer.nmr.mgh.harvard.edu/), abagen 0.1.3 (https://github.com/
rmarkello/abagen), mgcv 1.8.35 package (https://cran.r-project.org/
web/packages/mgcv/index.html), LIBSVM (3.25) (https://www.csie.
ntu.edu.tw/~cjlin/libsvm/), BrainNet Viewer 1.7 (https://www.nitrc.
org/projects/bnv), R 3.6.3 (https://www.r-project.org), Matlab 2018b
(https://www.mathworks.com/products/matlab.html), Python 3.7.12
(https://www.python.org), ToppGene Suit (https://toppgene.cchmc.
org/) and REViGO (http://revigo.irb.hr) online tools. The codes used in
this study139 are available at https://github.com/Xinyuan-Liang/SC-
shapes-the-maturation-of-cortical-morphology.
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