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A B S T R A C T

The individual heterogeneity is a challenge to the prosperous promises of cutting-edge neuroimaging techniques
for better diagnosis and early detection of psychiatric disorders. Individuals with similar clinical manifestations
may result from very different pathophysiology. Conventional approaches based on comparing group-averages
provide insufficient information to support the individualized diagnosis. Here we present an individualized im-
aging methodology that combines naturalistic imaging and the normative model. This paradigm adopts video
clips with rich cognitive, social, and emotional contents to evoke synchronized brain dynamics of healthy par-
ticipants and builds a spatiotemporal response norm. By comparing individual brain responses with the response
norm, we could recognize patients using machine learning techniques. We applied this methodology to recognize
first-episode drug-naïve schizophrenia patients in a dataset containing 72 patients and 54 healthy controls. Some
segments of the video evoked more synchronized brain activity in the healthy controls than in the schizophrenia
patients. We built a spatiotemporal response norm by averaging the brain responses of the healthy controls in a
training set, and trained a classifier to recognize patients based on the differences between individual brain re-
sponses and the norm. The performance of the classifier was then evaluated using an independent test set. The
mean accuracies from a 5-fold cross-validation were 0.71–0.78 depending on the parameters such as the number
of features and the width of the sliding windows. These findings reflected the potential of this methodology
towards a clinical tool for individualized diagnosis.
1. Introduction

Brain imaging has been expected to benefit translational psychiatry by
providing unique information for better diagnosis and early detection of
psychiatric disorders. The main body of imaging research has tackled this
challenge by comparing a group of patients with the same clinical diag-
nosis category to a healthy group, attempting to detect common and
generalizable brain deficits for diagnosis of a particular type of mental
disorder (Spaulding and Deogun, 2011). This design implicitly assumed
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that patients with similar clinical manifestations share common neural
characteristics (Kapur et al., 2012). However, considerable individual
heterogeneity in psychiatric disorders has induced difficulties in the
search for accurate and reliable neuroimagingmarkers (Insel et al., 2010).
A brain structural study has revealed that although the large sample
helped to detect significant group differences between mental disorders
and normal population, only 2% of the patients with the same diagnosis
showed common brain structural abnormalities (Wolfers et al., 2018).
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the normative model. This model characterizes the mean and variability
of the mentally healthy population and compares individual brains to the
healthy norm to yield individualized inferences. This model is a prom-
ising strategy for precision psychiatry because it avoids averaging brain
features across patients and therefore helps to reflect individual-specific
brain deficits (Braga and Buckner, 2017; Gordon et al., 2017; Wang et al.,
2018). Such a strategy has recently been applied to examine individu-
alized structure abnormalities in bipolar disorder and schizophrenia
(Wolfers et al., 2018).

Compared to structural metrics, functional imaging has an advantage
in the application of this normative model: proper stimuli in functional
imaging may reduce the individual difference of the healthy population
and reveal a larger difference between mental disorder patients and the
“healthy norm”. Previous studies have found larger individual differ-
ences in brain functional connectivity in associative cortices that
involved in complicated information integration (Mueller et al., 2013).
Thus, compared with resting-state, a paradigm with rich social and
cognitive stimuli that evoke higher-level information processing is a
better candidate for a normative model to reveal the abnormal brain
response in individual mental disorder patients (Finn et al., 2017).

This study presents a methodology that combines naturalistic imaging
with the normative model. We aim to elaborate on the difference of brain
responses between individual psychiatric patients and mentally healthy
participants, so that the patients could be identified from a movie-
watching brain scan. Compared with brain features such as anatomical
structure, resting-state functional connectivity, and brain responses to
repetitive, single-cognitive domain tasks, the naturalistic paradigm is a
more ecological fMRI design that engages neural circuits in natural
contexts (Hasson, 2004; Nguyen et al., 2019). Previous studies have
shown that movies with rich emotional and real-life context effectively
evoked synchronization of brain responses from healthy population
(Lahnakoski et al., 2014; Isik et al., 2018; Finn et al., 2017). Further,
studies have suggested that individuals with mental disorders could
exhibit different brain response patterns from healthy controls when
viewing a movie (Byrge et al., 2015; Carlson et al., 2017). Therefore, we
hypothesize that the naturalistic paradigm has the potential to reduce the
individual variability of mentally healthy participants. Further, by
comparing individual brain responses with the “healthy norm” evoked by
the naturalistic paradigm, we could recognize patients using machine
learning techniques. In this paper, we examine whether schizophrenia
patients could be identified using this individualized approach.

2. Methods

2.1. Participants

Seventy-four first-episode drug-naive individuals with schizophrenia
were recruited from the Shanghai Mental Health Center in China, and 58
healthy control participants were recruited from local communities in the
same city. The Institutional Review Board at the Shanghai Mental Health
Center approved the study protocol. Written informed consent was ob-
tained from each participant or his/her guardian prior to data acquisi-
tion. The inclusion criteria for the patients were: (1) age 16 to 40; (2) a
consensus diagnosis by two research psychiatrists of first-episode
schizophrenia according to the DSM-IV on the basis of a Structured
Clinical Interview; (3) an academic degree higher thanmiddle school and
capable of completing all study assessments; and (4) antipsychotic naive.
The exclusion criteria were: (1) mania or inability to finish study as-
sessments; (2) major depression according to DSM-IV; (3) a score of 7 or
higher on the Calgary Depression Scale for Schizophrenia (CDSS); (4) a
history of suicidal behavior; (5) a history of substance abuse; (6) preg-
nancy; (7) a history of serious physical disease; (8) a contraindication for
MRI scans, for instance, with metal implants. To rule out the effect of the
medication, the patients did not take medicine before the MRI scans, and
they received regular pharmacological treatments after the scan. The
time from enrolment was usually 2–3 days and no more than a week.
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The inclusion criteria for age- and gender-matched healthy control
group were: (1) age 15–40; (2) no serious physical diseases, pregnancy, or
substance abuse; (3) no psychoactive substance for at least one month; (4)
no history of mental disorder; and (5) academic degree higher than pri-
mary school. The exclusion criteria for healthy controls were: (1) meeting
criteria for any mental disorder according to DSM-IV; (2) a family history
of mental disorder; (3) unstable mental state; (4) a history of taking any
antipsychotic drugs; (5) a history of substance abuse; (6) pregnancy; (7) a
history of serious physical diseases; (8) a contraindication for MRI scans.

With these criteria, a total of 126 participants were recruited,
including 72 individuals with schizophrenia (SZ, 24 females), and 54
normal controls (NC, 23 females). For the SZ group, the mean age was
23.4, the mean education years was 11.6, and the mean PANSS (Positive
and Negative Syndrome Scale) score was 71.90; For the NC group, the
mean age was 23.5, the mean education years was 14.8.

2.2. Video stimuli

A silent video clip consisting of 6 public-interest advertisements was
used in this study. The length of the advertisements ranged between 3000

to 200100, and the total length of the video clip was 704900(Supplementary
Table 1). While the audio is an important element of the video clip, due to
the narrow diameter of the 32-channel coil, we were not able to fit a
headphone in it. Nonetheless, a silent video was free of confounders due
to language differences. The video and corresponding rating scores are
shared at https://github.com/yangzhi-psy/naturalistic_scz.

2.3. Data acquisition

All imaging data were collected with a 3.0 T S Verio MRI scanner
(Enlargen, Germany) at the Shanghai Mental Health Center. Resting-state
scans were acquired using a multi-band echo-planar imaging (MB-EPI)
sequence (50 axial slices), FOV¼ 216mm, matrix¼ 72� 72, slice
thickness/gap¼ 3.0/0.0mm, TR/TE¼ 2000/30ms, flip angle¼ 85,
240 vol, duration 800000). High-resolution anatomical scans were ac-
quired with a T1-weighted 3D MP-RAGE sequence (192 sagittal slices,
FOV¼ 256mm, matrix¼ 256� 240, slice thickness/gap¼ 1.0/0.0mm,
TR/TE/TI¼ 2300/2.96/900ms). Before the scan, the participants were
instructed to keep their head still and pay close attention to the video.
After scanning, the participants were asked to report their feelings during
the scan, such as falling into sleep, not watching the video, and any other
uncomfortable feeling. Participants reporting sleep or not watching the
video during the functional scans were excluded from this study.

2.4. Image preprocessing and quality control

The following preprocessing steps were applied to the fMRI data: (1)
the first 5 vol were discarded to allow MRI signal equilibration; (2) the
head movements were realigned over the entire scan; (3) nuisance arti-
facts such as the 24-parameter head motion time series, the mean signals
of the white matter and ventricles, and head motion spikes were
regressed out from voxel-wise time series; (4) the fMRI image was
spatially normalized to MNI152 space using ANTs, by combining a rigid
transformation from the mean fMRI image to the individual’s structural
image and a nonlinear transformation to a MNI152 template; (5) the 4D
data were standardized to a global mean intensity of 10,000; (6) the data
were then spatially smoothed using a 6-mm FWHM Gaussian kernel.

The quality of brain extraction and registration was visually checked.
Participants with poor brain registration quality and large head motion
were excluded from further analysis. Head motion was evaluated using
mean framewise displacement (meanFD), and the maximal meanFD was
limited to 0.2 mm.

2.5. Sliding-window inter-subject correlation analysis

As demonstrated in Fig. 1, we split the preprocessed fMRI data into a
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Fig. 1. Flowcharts of the analyses. (A) An overview of the analyses. The analysis consisted of a training stage (red rectangle) and a test stage (blue rectangle). The data
for the two stages were independent. In the training stage, we calculated voxel-wise sliding-window inter-subject correlation analyses (ISC) in 62 schizophrenia (ISCSZ)
and 44 normal control (ISCNC) individuals. The peak ISCNC/ISCSZ ratios between the two groups were as examined using a permutation test with multiple comparison
correction. For the supra-threshold voxels, the BOLD signals in the time windows with the peak ISCNC/ISCSZ values were averaged across the NC individuals, yielding
“NC templates” of brain responses. The BOLD signals of each individual, including both NC and SZ, were correlated with the ‘NC templates’. Then a linear classifier
based on support vector machine was trained to classify SZ and NC individuals based on the correlation coefficients. In the test stage, we evaluated the performance of
the classifier using the independent test dataset containing 10 SZ and 10 NC individuals. (B) A flowchart of the sliding-window ISC analysis. The time series of the
voxels at the same voxels were split into sliding windows. Within each time window, a correlation matrix was computed. ISCNZ and ISCSZ were computed by averaging
inter-subject correlations in the NC and SZ groups, respectively.
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discovery dataset (62 SZ, 20 females; 44 NC, 20 females) and a verifi-
cation dataset (10 SZ, 2 females; 10 HC, 5 females). The 10 SZ and 10 NC
participants in the verification were randomly selected and matched in
age and education years. A flowchart of the analyses is presented in
Fig. 1. For each participant in both datasets, the voxel-wise time series
were segmented into overlapping time windows. The width of each
window was 15 vol (30s), and the overlap between windows was 14 vol
(2s). This procedure yielded 221 segments of time series for each voxel
and each participant.

The following procedures were only applied to participants in the
discovery dataset. Inter-subject correlation coefficients were computed
using these segments, i.e., the time series in the corresponding time
windows at the same locations of different participants were correlated.
To simplify further analyses, we adjusted the correlation coefficients to
non-negative values by adding 1, so that the similarity metric ranged
between 0 and 2. We then calculated the mean inter-subject correlation
for the SZ group in the discovery set (ISCSZ) and the NC group in the
discovery set (ISCNC) by summing up all pairwise correlation coefficients
among the group members. The ISCSZ and ISCNC characterize the extent
of the brain activity synchronization among the SZ and NC participants,
respectively. The difference between ISCSZ and ISCNC was presented by
dividing ISCNC by ISCSZ. ISCSZ, ISCNC, and their ratio were functions of
space and time because the correlations were performed on each sliding
window and each voxel in the brain.

To search for brain regions with large ISCNC/ISCSZ ratios, we first
represented each voxel using the maximal ISCNC/ISCSZ ratio across the
221 sliding windows. Next, we generated a null-distribution of the
maximal ISCNC/ISCSZ ratios by randomly permuting the participants
among the NC and SZ groups (fixed the numbers of participants for both
groups, number of permutations¼ 5000). With this distribution, the
significance of the maximal ISCNC/ISCSZ ratios obtained in the real data
was evaluated. To correct for multiple comparison error, we set the
threshold for the voxel-wise at p< 0.005 (single-tailed) and determined
the spatial-extent threshold for significant clusters (88 voxels) using a
Monte-Carlo simulation. The smoothness used in the simulation was
estimated using the maximal ISCNC/ISCSZ ratio map. This procedure was
also applied to examine the significance of ISCSZ and ISCNC
3

2.6. Feature extraction and classification

The above analyses identified voxels with significantly large ISCNC/
ISCSZ ratios in the discovery dataset, suggesting that brain activity
measured in these voxels were more synchronized in NC than SZ par-
ticipants. We further identified the peak sliding window (showing
maximal ISCNC/ISCSZ ratio) for each of these significant voxels. The
BOLD signal within these peak sliding windows was then averaged across
44 NC participants to generate a spatiotemporal template of synchro-
nized brain activities for NC. For each participant, the time series located
in the corresponding time windows of the corresponding voxels identi-
fied above were extracted and correlated to the NC templates. The
resultant correlation coefficients indicate the similarity, at the specified
spatiotemporal locations, between the brain activity of the participants
and the NC template. These correlation coefficients were used as features
for classification.

A support vector machine (SVM) with linear kernel was trained to
identify SZ patients using the correlation coefficients obtained in the
discovery dataset. To examine the performance, we applied the classifier
to the verification dataset that is independent of the discovery dataset.
Classification accuracy, sensitivity, and specificity to identify SZ patients
were calculated based on the predictions of the classifier.

We further examined the generalization of the classification model by
using a 5-fold cross-validation scheme. All the data were pooled and
randomly split into 5 folds, with each fold contained around 85 in-
dividuals for training and 21 for test. The group ratio was kept similar
across the training set of the 5 folds. The feature selection procedures
were only applied to the training set in each fold. To reduce the
computational demand, we did not perform the permutation tests as
described above. Instead, we ranked the voxels according to the ISCNC/
ISCSZ ratios as defined above. For each fold, the ISCNC/ISCSZ ratios were
re-computed only in the training set, and the voxels with the largest
ISCNC/ISCSZ ratios were selected to build a response template of NC in-
dividuals using the same procedure described above. The correlation
coefficients of every individual to this response template were used to
train the SVM classifier. In the test set, all the individuals were correlated
to this response template, and the classifier predicted the label of the
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individuals based on the correlation coefficients. Using this scheme, we
also examined the effects of the width of the sliding-window (15 vol,
30 vol, 60 vol, and the whole time series) and the proportion of the
selected voxels in the ISCNC/ISCSZ ranking (top 1%, 3.5%, 5%, 10%, 20%
and 30%).

3. Results

3.1. Naturalistic paradigm evokes higher inter-subject correlation in
normal controls

To examine whether the naturalistic stimuli evoked higher inter-
subject correlation in the NC group than in the SZ group, we first
compared the peak of the sliding-window inter-subject correlations
(maxISCs) between the two groups in voxel, region, and network levels
(Fig. 2). At the voxel level, NC and SZ showed comparable ISCs in visual
areas, but NC showed higher maxISCs in the temporal, parietal and dorsal
frontal lobes than SZ (Fig. 2A–B). When averaging the maxISCs into 264
brain regions (Power et al., 2010), we observed a number of regions
showing significantly higher maxISCs in NC than in SZ (Fig. 2C, paired
t¼ 17.88, p< 0.001). When averaging the maxISCs into the 7 intrinsic
networks proposed by Thomas Yeo et al. (2011), NC exhibited higher
maxISCs than SZ in all networks (Fig. 2D). The difference between NC
and SZ became smaller when calculating the inter-subject correlation
using the entire time series (Fig. 2E–F). These findings suggest that the
naturalistic stimuli evoked higher homogeneity in the NC than SZ groups.
The sliding-window approach evoked larger between-group difference in
inter-subject correlation than the static ISC approach that computes the
ISC using the entire time series.

3.2. Spatiotemporal characteristics of the group difference of ISC

Using permutation tests, we identified 11 clusters, containing 2038
voxels, in which the temporal maxima of ISCNC/ISCSZ ratios were
significantly larger than the chance level (voxel-wise p< 0.005, one-
tailed, cluster size> 88 voxels, family-wise error p< 0.05), indicating
that brain activities in these voxels were significantly more synchronized
(at some time points) in the NC than in the SZ groups. As shown in Fig. 3A
and Supplementary Table 2, these clusters located in the right precuneus,
left middle temporal gyrus, left inferior parietal lobule, right inferior
parietal lobule, left superior frontal gyrus, right supramarginal gyrus,
right middle frontal gyrus (BA8), right middle frontal gyrus (BA6), right
cerebellum (uvula), left superior temporal gyrus, and left inferior frontal
gyrus, indicating that some activities in these regions are significantly
more synchronized in NC subjects.

As a control condition, we examined the ISC in a voxel located in the
primary visual area (at the center of the pink circle in Fig. 3A) and found
no significant ISCNC/ISCSZ. Fig. 3B demonstrates that the ISC time
courses for the NC and SZ groups are similar, ruling out the possibility
that the SZ participants failed to watch the video. We also examined
whether the group differences were due to the different levels of head
motion of the two groups during the scan. We applied the same sliding
windows to compute the mean FD within each of them. The results are
presented in Supplementary Fig. S1. We did not find any significant
difference between the two groups in any sliding window.

The ISCNC/ISCSZ ratios of the 2038 voxels varied with time and
exhibited peaks at 89 different time points of the video. To summarize
the results, these temporal locations were separated into 18 video seg-
ments according to their closeness (temporal locations closer than 3 time
points were deemed as one location). Fig. 3C and F present exemplary
contents in two of the 18 video segments. Correspondingly, Fig. 3D and G
present the voxels that had their peak ISCNC/ISCSZ ratios falling into the
presented video segments. Fig. 3E and H show the ISC time courses for
the NC and SZ groups at the peak voxels. In all 18 segments, we observed
significantly higher ISC in the NC than in the SZ groups. These results
indicate that for different voxels, synchronized brain activities in the NC
4

group could be evoked by different contents in the video.

3.3. Synchronized brain activity templates from normal participants

To avoid averaging across the SZ participants in statistical compari-
sons, we built spatiotemporal synchronized brain activity templates only
from the NC participants and compared individual SZ participants with
the NC template. For each of the 2038 voxels, we averaged, across the 44
NC participants, the BOLD signals within the sliding window showing the
peak ISCNC/ISCSZ values. Fig. 4A presents an example of the averaged
BOLD signals using a blue curve. The averaged BOLD signal from the SZ
group is also shown in red to demonstrate the brain activity difference
between the groups, which was not used in any statistical inferences.
Compared with the SZ group, the averaged signals of the NC group
seemed to show clearer fluctuations in the given time windows.

At the corresponding spatiotemporal locations, the BOLD signals from
all individuals were correlated to the averaged BOLD signal. Fig. 4B
presents a color-coded matrix showing the resultant correlation co-
efficients, where the rows represent individuals from both NC and SZ
groups, and the columns represent the 2038 voxels. The NC participants
consistently exhibited high correlation coefficients, while the SZ partic-
ipants showed considerable heterogeneity. With this spatiotemporal
template from NC, we could characterize each individual using a 2038
dimensional vector, and inter-individual distance could be visualized
(see Fig. 4C) by using multi-dimensional scaling (MDS) that compress the
high-dimensional space into two dimensions. It should be noted that
Fig. 4A–C aim to provide intuitive demonstrations in order to understand
the operations in the training dataset. Conclusions cannot be drawn from
these demonstrations, because these demonstrations were not indepen-
dent from the features selection.

3.4. Identifying schizophrenia based on movie-evoked brain activity

The above findings were all generated using the discovery dataset.
Using the independent verification dataset (10 SZ and 10 NC), we
examined the performance of identifying schizophrenia participants
using the spatiotemporal brain activity template of NC participants. An
SVM classifier was trained using the 2038-dimensional features in the
discovery dataset to classify SZ from NC participants. When applied to
the validation dataset, the classifier achieved an accuracy of 95%, a
sensitivity of 100%, and a specificity of 90% when identifying SZ par-
ticipants. The participants in the verification dataset are also presented in
the MDS plot using circled dots in Fig. 4C. The colors of the circles
indicate the guess of the classifier, and the colors of the dots mark the
diagnosis of the participants. Fig. 4D shows the weights of the voxels of
interest in the linear classifier, which could be interpreted as “impor-
tance” of the voxels in the classifier. The posterior midline structures, the
right angular gyrus, the left middle temporal gyrus, and the right dorsal
frontal played important roles in the classification.

We examined the generalizability of this approach and the effects of
the parameters used in the model, such as the width of the sliding win-
dow and the ratio of selected voxels among all voxels using a 5-fold cross-
validation scheme. As presented in Fig. 4E, the mean accuracy of the
cross-validation ranged from 0.71 to 0.78, depending on the width and
ratio. With a width of 30 TRs and a ratio of 0.1, the classifier achieved the
highest accuracy of 0.78. A ratio of 0.035 was the closest to the number of
selected voxels in the above analyses (2038). At this ratio, the width did
not alter the classification accuracy dramatically. Fig. 4E also presents
the classification accuracies for the static ISC approach. When less voxels
were selected, the static ISC approach gave lower classification accu-
racies than the sliding-window approach.

3.5. Linking the video contents to abnormal regions in SZ

To interpret the brain regions showing significant ISC difference be-
tween the NC and SZ groups, for each of the 11 clusters, we correlated the



Fig. 2. Inter-subject correlations in the SZ and NC groups. (A) Voxel-wise map of the peak dynamic ISC of the SZ group. (B) Voxel-wise map of the peak dynamic ISC of
the NC group. (C) Region-wise comparison of the peak dynamic ISC. (D) Network-wise comparison of the peak dynamic ISC. (E–F) Region-wise and network-wise
comparisons of the static ISC that was computed using the whole time series.
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Fig. 3. Spatiotemporal characteristics of the between-group difference of ISC. (A) The surface map shows brain regions where the maximal ISCNC/ISCSZ ratios were
significant (family-wise error corrected, voxel-wise p< 0.005, one-tailed, cluster size> 88 voxels). The ISCNC/ISCSZ peaks of these regions appeared in 89 different
time points that were merged into 18 segments. The colors label the segment numbers. B. The inter-subject correlation time courses of the schizophrenia (SZ, red
curve) and normal control (NC, blue curve) groups at a voxel in the primary visual area. The two groups showed similar inter-subject correlation time courses,
indicating that the natural stimuli were input to the neural system in similar ways between the two groups. C and F present exemplary contents in two of the 18 video
segments. D and G show voxels that exhibited maximal ISCNC/ISCSZ ratios in the corresponding segments. E and H depict inter-subject correlation time courses of the
peak voxels of SZ (red curves) and NC (blue curves) groups.
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occurrence of the ISCNC/ISCSZ peaks among the 18 segments with a 9-
item scale of subjective experience. Twenty college students and gradu-
ates (not involved in the study) rated the 18 segments on the following 9
aspects: (1) Feel happy (10-point scale, same below); (2) Feel Angry; (3)
Feel fearful; (4) Feel disgusting; (5) Feel sad; (6) Feel emotional fluctu-
ation; (7) Is about myself; (8) Feel empathy; (9) Require reasoning to
understand (2 alternatives). Fig. 5 presents a correlation matrix showing
the associations between the ISCNC/ISCSZ peaks and characteristics of the
video content, where correlation coefficients are color-coded and two
levels of significance of the correlation coefficients (p< 0.05 and
p< 0.01) are marked using different symbols. The left middle temporal
gyrus exhibited associations with the reasoning process and the happy
6

experience, while the right inferior parietal and the right middle frontal
gyrus (BA6) showed an association with negative emotional experience
such as angry, fearful, disgusting, and sad. The data for obtaining these
results are presented in Supplementary Fig. 2. These findings suggest that
compared with SZ individuals, NC individuals have more synchronized
brain activities in these regions when responding to reasoning and
negative emotions.

4. Discussion

In this study, we developed an individualized psychiatric neuro-
imaging approach by leveraging inter-subject neural synchronization



Fig. 4. “NC template” and classification results. (A) An example of “NC template”: the mean BOLD time courses from a representative voxel with significant ISCNC/
ISCSZ peaks. The time courses of the NC individuals were extracted from the time windows showing the peak ISCNC/ISCSZ ratios and were standardized into Z scores
before averaging. The error bars indicate standard error across individuals. The mean time courses of NC (blue curve) is considered as an “NC template” that represents
common brain activities evoked by the natural stimuli in the normal control population. (B) Correlation coefficients between individual brain activity and the NC
templates. Each row represents an individual in the discovery dataset (62 SZ and 44 NC), and each column indicates a voxel of interest. (C) Two-dimensional
visualization of the inter-subject relationship based on the matrix shown in (B). The NC individuals (blue dots) are closer to each other than the SZ individuals
(red dots). The individuals from the independent verification dataset (10 SZ and 10 NC) are also included in this visualization, as marked by the circles. The colors of
the circles indicate the guesses of the classifier. The classifiers correctly labeled all but one individual (the blue dot with a red circle). It should be noted that panels
(A–C) aim to demonstrate the operations in the training dataset, and conclusions cannot be drawn from these demonstrations (expect the dots with circles in panel C),
because these demonstrations were not independent of the features selection. (D) A voxel-wise weight map shows the “importance” of the voxels of interest to the
linear classifier. (E) Mean classification accuracy in a 5-fold cross-validation analysis. The horizontal axis represents the ratio of selected voxels. A ratio of 0.035 is the
closest to the 2038 voxels selected in the analyses presented in panels (A–D). The performance of different widths of the sliding-window (15, 30, 60, and all volumes)
are presented using different lines.
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Fig. 5. Associations between the synchronized brain activity in healthy controls
and subjective rating scores of the natural stimuli. The brain regions are the 11
clusters identified with significant ISCNC/ISCSZ peak ratios, i.e., higher inter-
subject correlation in the NC than in the SZ groups. The colors code the cor-
relation coefficients. The white dots mark the correlation with a significance of
p< 0.01 and the grey dots with a significance of p< 0.05. These associations
indicate that NC individuals have more synchronized brain activities than SZ
individuals in these regions when responding to reasoning demand and negative
emotions when viewing the video. Abbreviations: R PreC: right precuneus; L
MTG: left middle temporal gyrus; L IPL: left inferior parietal lobule; R IPL: right
inferior parietal lobule; L SFG: left superior frontal gyrus; R SMG: right superior
marginal gyrus; R MFG: right middle frontal gyrus; R Cereb: right cerebellum; L
STG: left superior temporal gyrus; L IFG: left inferior frontal gyrus.
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during the movie watching. A normative template of brain activity for
detecting individuals with schizophrenia was constructed by averaging
synchronized brain activities among mental healthy individuals while
watching movie clips. Abnormal “fingerprints” of psychiatric individuals
were then depicted using deviations from the normative template. Our
approach yielded a relatively high accuracy in identifying first-episode
schizophrenia patients. The advantages of this method, as well as its
potential applications, are discussed below.

Group comparison is a classic design in scientific research to reflect
the generalizable differences between populations, but the effect size of a
populational difference could be affected by the within-group hetero-
geneity. In neuroimaging studies of psychiatric disorders, the within-
group heterogeneity is likely to be high because patients with similar
clinical manifestations may not share common neural characteristics
(Cusi et al., 2012). Due to the considerable heterogeneity, the low effect
size in group comparisons requires the increased demand on large sample
size and high reliability of the measure (Kanyongo et al., 2007), and some
demands are not realistic in current psychiatric neuroimaging studies.
Thus, conventional approaches based on groupmean comparison limit its
applications in psychiatric neuroimaging.

The methodology in the present study avoids averaging data of psy-
chiatric patients, thus has the potential to protect the large heterogeneity
in neural characteristics among individuals of certain psychiatric disor-
ders. Such heterogeneity is actually informative under some circum-
stances, which can be used to detect brain functional abnormality in
individual patients. There are several methods that have been success-
fully implemented in the field of functional neuroimaging to characterize
individual differences. For instance, Wang et al. (2018) have used
individual-specific functional connectivity measures to characterize the
individual difference in psychotic patients, and Russel et al. and Braga
et al. have demonstrated the gain of precision in investigating accumu-
lated brain scans of single individuals (Braga and Buckner, 2017; Pol-
drack, 2017). In comparison to the existing individualized methods, our
strategy based on inter-subject neural synchronization treats healthy and
psychiatric individuals differently in that our approach attempts to evoke
synchronized brain activities in the mentally healthy population, the
8

possibility of which has been demonstrated in previous studies (e.g.,
Hasson, 2004; Nguyen et al., 2019; Byrge et al., 2015; Vanderwal et al.,
2017). For the individual psychiatric individuals, our approach does not
aim to examine their “averaged” deficits but to reveal their individual
differences from the common brain activities in the healthy population.

Outcomes from our approach are significant as it possesses several
strengths as compared with previously available methods. First,
comparing with the commonly used resting-state measures that are
derived from uncontrolled mental states, this paradigm minimized the
individual difference of the mentally healthy population and thus
increased the effect size of the comparison. The application to identify
individuals with schizophrenia provided supporting evidence for the
effectiveness of this methodology. Consistent with this notion, we
observed that naturalistic stimuli evoked more synchronized brain ac-
tivity in the NC participants than in the SZ patients and that comparing
the brain activities of individual SZ patients with the common brain ac-
tivity of NC participants yielded a high accuracy in identifying SZ pa-
tients. Second, comparing individual participants with a common
template could be applied to other structural (see an excellent example in
Wolfers et al., 2018) and functional metrics, though the naturalistic
paradigm is a good companion for this strategy. Third, comparing with
the widely used resting-state paradigm, brain activities evoked by natu-
ralistic stimuli can be directly compared or averaged across subjects, and
the data acquisition is as easy as the resting-state. Finally, comparing
with the repetitive task-activation paradigm, the naturalistic paradigm
induces much richer cognitive and social contents and can potentially
evoke more detailed individual differences in psychiatric patients (Byrge
et al., 2015; M€antyl€a et al., 2018).

It is worthy to note that the methodology presented here has limited
power in explanation of the individual differences in brain activity.
Although the coding of natural stimuli provides an approach to associate
synchronized brain activity to various variables, it is not sufficient to
provide an affirmative answer to why an individual patient’s brain ac-
tivity deviates from the healthy population. Nonetheless, the capability
which reveals individual differences and the potential to accurately
identify psychiatric patients makes this methodology a useful tool for
translational neuroimaging studies on psychiatric disorders with
considerable heterogeneity. Although previous evidence has suggested
that content-rich tasks may perform better in identifying individuals
based on brain activity (Finn et al., 2017), in future works, we still need
some direct comparisons between the naturalistic and the resting-state
paradigms when applying normative model to identify individuals with
mental disorders. In addition, 57% of the training set were schizophrenia
patients, which is much higher than the prevalence of this disease. This
disagreement with the real-world situation should be noted when
applying the paradigm to develop potential diagnosis tools.

In conclusion, our study demonstrates the advantages of an individ-
ualized psychiatric neuroimaging methodology based on inter-subject
neural synchronization evoked by viewing natural video clips. This
approach respects the heterogeneity in brain activities, which allows us
to make inferences for individual patients and has the potential to have
more broad applications into translational psychiatric imaging.
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