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Abstract 1 

Transdiagnostic factors are considered promising in elucidating the etiological underpinnings 2 

of psychiatric comorbidities, especially in anxiety and depression. However, their symptom-3 

centered neurobiological substrates, encompassing the genetic macro-micro-molecular brain 4 

functional landscape, remain elusive. Here, we develop edge-centric functional brain 5 

connectome-based predictive models for transdiagnostic factors of anxiety and depression 6 

symptoms (sTDF). These factors are estimated from nonlinear Gaussian topological schemes 7 

in a nationwide sample and a twin dataset. Edge-centric connectome was found to be 8 

reproducible and generalizable neural signatures for the sTDF, showing high sensitivity in 9 

neurally representing the sTDF from edge-centric similarity patterns of 10 

attention/frontoparietal networks. Such edge-centric signatures were found moderately 11 

heritable. Genetic transcriptional analyses further revealed the biological enrichment for gene 12 

expression patterns of these edge-centric connectome emerging into vessel systems and 13 

metabolism of CMRO2 for sTDF, especially for cerebellar development in late-childhood-to-14 

young-adulthood. Our findings shed lights on the neurobiological architectures of sTDF by 15 

clarifying edge-centeric connectome-transcriptional signature.16 
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Introduction 17 

Affective disorders consisting of broad internalizing problems (e.g., anxiety disorder, 18 

depressive disorder and bipolar disorder) are of still leading mental health problems in the 19 

globe, with strikingly high prevalence of both anxiety and depression disorders and 20 

considerable lifetime comorbidities between them (60%)1,2. To elucidate the etiological 21 

understructure of such comorbidities , cognitive behavioral theories have proposed to move 22 

disorder-specific categorical nosology forward into disorder-across “transdiagnostic” 23 

components, and have been substantiated by showing common behavioral latent factors (e.g., 24 

p factor), pharmacological/behavioral treatments and even neurobiological mechanisms, to 25 

well-formulate such comorbidites3-7. Rather to well-established “paradigm shifting” in the 26 

psychiatric diagnosis on patients8-10, such transdiganostic insights into shared symptoms of 27 

anxiety and depression in the “subclinical or at-risk” population are still underdeveloped. 28 

Supporting that, the clinical staging models renewed the definition of disease/disorder into a 29 

cross-symptom continuum from “preclinical manifestation” to “late-stage disease”, rather than 30 

a conclusive binary classification11,12. Another promising theoretical framework to tackle 31 

challenges derived from historically nosologcal structure, that is the Research Domain Criteria 32 

(RDoC), also puts forward to decompose psychiatric disorders into preclinical developmental 33 

symptom-across “Domains” (e.g., early environment, genetic risks and brain molecular-34 

cellular-circuit vulnerability) and ensuing psychiatric outcome (i.e., diagnosed disorder)13,14. 35 

Thus, existing evidence may resonate an imperative need to probe the transdiagnostic factors 36 

of anxiety and depression symptoms outside clinical patients, especially in their 37 

neurobiological architectures. 38 

 39 

To capture biologically-explicable markers in the transdiagnosis for psychiatric patients, 40 

network neuroscience is remarkably propelling our understandings of intrinsically neural 41 

architectures of psychiatric comorbidity from discrete regional dysfunctions into systematic 42 

connectome-based perturbations15,16. Connectome, a completed component to describe 43 

intrinsic region-to-region functional connections (rFC) in the whole brain, has been broadly 44 

demonstrated as a fundamental principal of brain functioning17,18. Rather mapping the 45 

psychiatric categories into specific brain local anomalies or plain connectivity, connectome-46 

based models conceptualized behavioral dysfunctions or neuropsychiatric disorders as 47 

resultant distinct phenotype of perturbing brain intrinsic connection profiles19,20. Promisingly, 48 

cumulative evidence emerged to substantiate that connectome-based features outperformed 49 

in predicting depressive/anxiety disorders and even comorbid ones than markers 50 

characterized by regional changes or plain neural circuits21,22. In this vein, it may resonate that 51 

connectome-based prediction paves a feasible way to clarify integrative neurobiological 52 

signatures of transdiagnostic architectures for preclinical or “at-risk” population.  53 

 54 

Rather to rFC that currently dominates in network neuroscience, the edge-centric FC (eFC) to 55 

capture between-rFC communication patterns provided promising insights in featuring brain 56 

connectome23. The eFC measured the similar patterns of co-fluctuation of spontaneous brain 57 

activities at each instant time point24. Probing into eFC characterizations of brain connectome 58 

surpassed traditional rFC by enabling to track the larger scale and higher dimension of neural 59 

network architectures, especially aiding us in delving into the brain-symptom continuous 60 
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spectrum25-27. As a novel neuromarker, the eFC has been shown reliable and plausible neural 61 

representations in classifications of both neuropsychiatric disorder and neurological disease28-
62 

30. Therefore, extending neural representations of eFC into connectome-based predictive 63 

model in characterizing transdiagnostic symptoms could enrich intrinsic neuromarkers of 64 

common factor of anxiety and depression. 65 

 66 

Notably, brain connectome, as one of the most robust neuromarkers in transpsychiatric 67 

conditions, has been demonstrated to be a potent candidate for endophenotype or 68 

intermediate phenotype to bridge preclinical/clinical phenotype into genetically molecular 69 

understructure31,32. Supporting this standpoint, by using the Allen Human Brain Atlas (AHBA) 70 

that shared a high-throughout microarray sequencing dataset identifying spatial 71 

transcriptome across whole brain, there are robustly empirical evidence to show the genetic 72 

transcriptional signatures of connectome-derived phenotype in categorical psychiatric 73 

conditions, such as major depressive disorder and schizophrenia33-36. By leveraging the ABHA, 74 

delving into neuropathological mechanisms of psychiatric conditions could be closely looped 75 

from genetically molecular architectures to macroscale connectome-derived changes and 76 

ensuing phenotype (symptoms)37,38. In addition to phenotypic association for transdiagnosis 77 

of anxiety and depression, they share nearly 40% genetic contributions39. Thus, it may 78 

intensively necessitate a well-established study to clarify neurobiological signatures of such 79 

symptom-centered transdiagnostic factors by insights from a genetic connectome-80 

transcriptional landscape into the preclinical populations. 81 

 82 

To this end, we aim to clarify edge-centric (eFC) conncetome-based brain signatures of the 83 

transdiagnostic factor of anxiety and depression symptoms (sTDF). Furthermore, by examining 84 

twin quantitative genetic associations and eFC-specific transcriptional profiles, we further 85 

provide systematic landscapes to enrich our understanding of the neurobiological 86 

underpinnings of such transdiagnostics into genetic micro-to-molecular architectures (Fig. 1). 87 

 88 

Results 89 

Summary of the main analyses. 90 

We recruited a nationwide sample from independent collectors during Nov, 2019 - Feb, 2022, 91 

with diverse ethnic groups and balanced socioeconomic conditions (Fig. 2a, Supplemental 92 

Methods 1, Tab. S1-3). Main analyses in our present study were categorized into five modules. 93 

In the module 1, we capitalized on EBICglasso-derived Gaussian graph-theoretical model for 94 

estimating the hubs of symptom-centered connectome in calculating symptom-across sTDF 95 

scores (Fig. 1a)5,40. In the module 2, the edge-centric connectome was built for eligible 1,314 96 

participants in neuroimaging analyses, with each participant for constructing a 12,248,775 x 97 

12,248,775 neural connectome (Fig. 1b). In the module 3, we developed the edge-centric 98 

connectome-based predictive model (eCPM)41,42 to individually predict sTDF score into six 99 

relatively independent groups basing on the independent collector (s) or category (Fig. 1c). 100 

Rather than individual prediction, we deployed inter-subject representation similarity (IRS) 101 

analysis model to probe into edge-centric patterns of sTDF changes in the module 4 (Fig. 1d). 102 

In the module 5, we not only probed into the genetic heritability of eFC patterns from a twin 103 

dataset (n = 245, 127 Monozygotic twins), but also examined RS-enriched transcriptional 104 
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patterns by aligning into the AHBA (n = 6 postmortem brains, 10, 027 genes), with further 105 

decodes for their macroscale brain-derived associations and molecular enrichment into 106 

biological ontology, cell- and tissue-specific types, and neurodevelopmental periods (Fig. 1e). 107 

 108 

Symptom-centered hubs defined transdiganostic factor of anxiety and depression symptoms. 109 

We refined each symptom (item) that was described by both Zung’s self-reported depression 110 

(SDS) and trait anxiety inventory (TAI) to build the Gaussian graph-theoretical network. We 111 

first found significant network-wise correlation between depressive symptoms and anxious 112 

symptoms (r = .40, p < .001, Mantel’s test), statistically justifying to integrate them into a single 113 

transdiagnostic network (Fig. 2b, Supplemental Methods 1-5, Fig. S1-6). In this transdiagnostic 114 

network, the high topological centrality was found in the specific symptoms of “perceiving 115 

meaningless life”, while the clusters of “feeling exhaustion” were captured to bridge core 116 

symptoms between depression and anxiety across multifarious topological properties (Fig. 2c, 117 

Supplemental Methods 5, Tab. S4-5). By estimating the normalized Shannon’s entropy (SE, 118 

Supplemental Methods 6), the transdiagnostic hubs were found in the cluster of “perceiving 119 

meaningless life” and “feeling exhaustion” consisted of 12 symptoms (all SE > 0.8, Fig. 2d and 120 

Tab. S6), and the common loading integrating these symptoms were estimated as sTDF scores. 121 

Stability and statistical powers of estimating these topological properties from this network 122 

had been validated well (Supplemental Methods 7, Fig. S7-10). Collectively, beyond linear 123 

latent component in patients (e.g., p factor), we illuminated hubs of transdiagnostic symptoms 124 

of anxiety and depression by insights into the network-wise architecture. By doings so, we 125 

extended to provide this new sTDF scalar integrating to depict their topologically symptom-126 

centered properties. 127 

 128 

Edge-centric brain functional connectivity (eFC) could be reproducible and generalizable 129 

neural signatures of sTDF. 130 

Given the strengths in predicting transpsychiatric conditions from connectome-based insights, 131 

we built upon the eCPM to individually predict sTDF from those edge-centric connectome by 132 

training support vector regression model, with each connectome for containing 12,248,775 133 

putative eFCs from 4,950 “edge-centric nodes” that defined by Schaefer atlas (100 parcels) 134 

across whole brain per participant (Methods, Supplemental Methods 8-10). By using 135 

Fruchterman-Reingold algorithm, we found significantly high network centrality of visual 136 

network (VIS), sensorimotor network (SMN) and attention networks (VAN/DAN) in this 137 

connectome (normalized degree centrality > .6, p < .001) (Fig. 3a-b, Tab. S7). These findings fit 138 

with existing studies23-25,43, showing high validity of constructing these eFCs for neural features. 139 

 140 

The eCPM showed statistically significant predictive roles of the eFCs to individual sTDF in the 141 

Main sample with 10-fold cross-validation, irrespective of training the regressor from positive 142 

eFCs (R2 = .23, pperm < .01), negative eFCs (R2 = .26, pperm < .01) or combined one (R2 = .41, pperm 143 

< .01) (Fig. 3c). In the relatively independent Validation sample, we validated high 144 

reproducibility of this eCPM by all replicating these findings (pperm < .01) (Fig. 3d). Despite 145 

decreased model performance, the generalizability of this eCPM has partially manifested by 146 

showing the significantly predictive effects of this trained eCPM in the Generalization sample 147 

1 (pperm < .05) (Fig. 3d). To validate the robustness of generalizability in heterogeneous cohorts, 148 
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we further examined prediction of this trained eCPM into additional independent samples. In 149 

the Generalization sample 2 encompassing over 30 locally ethical minorities in the China, we 150 

still found the significant predictive effects (pperm < .05) (Fig. 3d). Such generalizability has been 151 

found partly in another Generalization sample 3 that contained all participants in the main 152 

ethical group in the China (Han) (pperm < .05) (Fig. 3d). Given the potential confounding effects 153 

of the COVID-19 pandemic, we capitalized on this trained eCPM for generalizing in the 154 

Generalization sample 4 that recruited after COVID-19 pandemic in the China, and 155 

demonstrated the statistically significant generalizability (pperm < .05) (Fig. 3d). The specificity 156 

of this eFC has been also validated by showing optimum model performance for predicting 157 

sTPD compared to single-disorder symptoms (Extended Data Fig. 1). On balance, these results 158 

highlight that the edge-centric connectome could be reproducible and generalizable brain 159 

signatures of transdiagnostic factor of anxiety and depression symptoms. 160 

 161 

Edge-centric communication patterns of attention and frontoparietal network contributed 162 

to explain changes of such transdiagnostic factors. 163 

To strengthen the neurobiological interpretability of this eCPM, we examined the contributive 164 

features of these eFC by extracting edge-centric within- and across-system communication 165 

patterns, respectively. We found no apparent outliers in the co-fluctuations across all the time 166 

points (Extended Data Fig. 2a), enabling estimations of eFC-sTDF correlations without 167 

additional corrections. Based on the feature selections (Supplemental Methods 10), we then 168 

illustrated these inter-subject eFC-sTDF correlations with p < .05, showing uneven distributions 169 

into attention and frontoparietal networks (Extended Data Fig. 2b-c). By integrating these eFCs 170 

into the brain systems that defined by Yeo-7 atlas, we found prominently high within-system 171 

weights and high communication density in the frontoparietal and attention networks (all pperm 172 

< .01, FDR-corrected) (Extended Data Fig. 2d, Tab. S8-11). In addition to such intra-connection, 173 

we demonstrated high between-system communications between ventral/dorsal attention 174 

networks and frontoparietal network by showing high normalized Shanno’s SE (all pperm < .01, 175 

FDR-corrected) (Extended Data Fig. 2e-f).  176 

 177 

Given the heterogeneous individual-between variants in the eCPM prediction, we furthered 178 

our analysis in the group-averaged multivariate representation similarity model (RSA) to 179 

sensitively decode brain-symptoms patterns. We found that both neural representation 180 

similarity matrix (nRDM) and behavioral RDM showed apparent individual-between variances 181 

on Euclidean distance across participants, implying the feasibility to decode neural 182 

representations of such brain-behavior changes (Extended Data Fig. 3a-b). We found 183 

statistically significant higher representation similarity (RS) in eFCs involving into frontal pole, 184 

superior frontal cortex, precuneus, and visual areas (all pperm < .05, FDR-corrected), these 185 

regions that were predominantly assembled into frontoparietal, attention and default mode 186 

networks (Extended Data Fig.3c, Tab. S13). Based on brain systems parceled by Yeo-7 atlas, 187 

we demonstrated higher RS within the attention networks and limbic networks (all pperm < .05, 188 

FDR-corrected, Extended Data Fig. 3d, Tab. S14-17). Beyond intra-system patterns, we 189 

observed significant RS in the eFCs relating to cross-system communications, such as edge-190 

centric connection of default mode network to limbic network (all pperm < .05, FDR-corrected, 191 

Extended Data Fig. 3e-f). Thus, we may decode edge-centric communication patterns of such 192 
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transdiagnostic factor by showing brain eFC-derived disruptions in attention, limbic and 193 

frontoparietal systems. 194 

 195 

Brain edge-centric patterns are moderately heritable. 196 

We built upon the univariate quantitative ACE (A, addictive genetic factor; C, common 197 

environment; E, unique environment) model to disentangle phenotypic heritability of such eFC 198 

features in an independent twin dataset (Supplemental Methods 11). A moderate heritability 199 

of these eFC patterns (22.9%, 95% CI: 7.4 - 37.2) was found in the clusters of attention network 200 

at the optimal best-fitting AE model (Fig. S11 and Tab. S18-19). Supporting that, we observed 201 

a statistically significant correlation within monozygotic twins (ICC r = .22, p < .0001) for such 202 

eFC features, but not yet within the dizygotic ones (ICC r = .06, p = .28). All the statistics had 203 

been adjusted for correcting artifacts of sex, age and head-motion parameters. In total, 204 

beyond the (intermediate) phenotypic neural signatures, the edge-centric connectome may 205 

be a manifestation of outcomes of individual heritable variants, and it thus prompting the 206 

probes into molecular genetic associations of these eFC patterns associating to such 207 

transdiagnostic factor. 208 

 209 

Edge-centric functional connectome of this transdiagnostic factor correlated to specific 210 

cortical gene expressions. 211 

Given the heritability of such eFC signatures, we used the normative AHB atlas 212 

(http://human.brain-map.org) to delve into the genetically neurobiological understructure of 213 

such neural signatures of this transdiagnostic factor by capturing their transcriptional profiles 214 

(see Methods). By using representation similarity of eFCs into each region as neural phenotype 215 

(Fig. 4a), we carried out partial least squares (PLS) regression model to estimate eFC-216 

transcriptional alignments. Both first and second component (s) of PLS (PLS1, PLS2) were found 217 

to explain cumulative 32.4% variances in the spatial patterns of eFC from gene expressions, 218 

showing the anterior-posterior hierarchy (Fig. 4a, Supplemental Results). This results indicate 219 

significant connectome-transcriptional co-changes of above transdiagnostic symptoms.  220 

 221 

These results were further supported by showing the significant correlation between neural 222 

signatures (i.e., representation similarity of eFC) and gene expression maps (i.e., PLS weighted 223 

scores) in both PLS1 and PLS2 (rPLS1 = .31, pperm < .01; rPLS2 = .30, pperm < .01) (Fig. 4a). By 224 

examining the statistical significance of gene sets in PLS1 and PLS2, we further found 27 (or 225 

231) genes overexpressed (or under-expressed) with increased (or decreased) cortical eFCs 226 

(PLS1+, Z > 3.0 or PLS1-, Z < 3.0, p < .005, Fig. 4b, Tab. S20-21) in the PLS1, as well observed 227 

similar associations in the PLS2 (Fig. 4b, Tab. S22-23). These results were reinforced by 228 

showing prominent univariate correlations between spatial gene expressions with top weights 229 

and neural phenotype in both PLS components (p < .05, FDR-corrected, Fig. 4c-d, Tab. S24-25). 230 

Collectively, the edge-centric connectome may be a promising candidate as neural 231 

endophenotype (or intermediate phenotype) of this transdiagnostic factor of anxiety and 232 

depression symptoms, which possibly revealed the genetically molecular mechanisms of 233 

vulnerability of such comorbidity. 234 

 235 

Gene expression patterns of eFC-derived phenotype were correlated with macro-scale brain 236 
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network changes, cortical metabolism and risks of neuropsychiatric diseases. 237 

For annotations of these transcriptional changes, we decoded macro-scale brain correlates of 238 

these gene sets (PLS1 and PLS2) depicting gene expression patterns of this transdiagnostic 239 

factor by using general linear models in the meta-analytic databases 240 

(http://dutchconnectomelab.nl/GAMBA/). These genes were found to spatially expressed 241 

across the whole brain (Extended Data Fig. 4a), with significant correlates of limbic/visual 242 

networks and even whole-brain functional connectivity (p < .05, FDR-corrected, Extended Data 243 

Fig. 4b, f, Tab. S26-27). Furthermore, we found trends of associations of these gene 244 

expressions to brain cognitive functions involving into visual and executive functions by being 245 

annotated from these cognitive ontology (Extended Data Fig. 4c, Tab. S28-29). Supporting that, 246 

results of cognitive meta-analytic decoding in the NeuroSynth dataset showed correlates of 247 

these gene sets to visual ability, negative affect and emotional performance (Extended Data 248 

Fig. 4d, Tab. S30-31). Although no significant correlates of cortical expansion and such gene 249 

expressions patterns were found (Extended Data Fig. 4e), the cortical metabolic rate of oxygen 250 

(CMRO2) was observed to prominently correlate with such gene expressions (p < .05, FDR-251 

corrected, Extended Data Fig. 4f, Tab. S32). In short, based on such decoding analyses, we 252 

found the macro-scale brain associations of these gene sets on this transdiagnostic factor, 253 

including visual/limbic systems and cortical metabolism to oxygen. 254 

 255 

We further probed into the correlates of these gene sets to the risks of neurological and 256 

neuropsychiatric diseases in BrainMap datasets. Gene sets have been respectively assembled 257 

from the PLS1 (comprising PLS1+ and PLS1-) and PLS2 (comprising PLS2+ and PLS2-) 258 

components, showing specific spatial distributions of gene expression across whole brain 259 

(Extended Data Fig. 5a). PLS1 component was found to be significantly correlate with risks of 260 

autism spectrum disorder, Asperger, stroke and dyslexia (p < .05, FDR-corrected, Extended 261 

Data Fig. 5b, Tab. S33). These findings were partially validated by showing the significant 262 

correlations of PLS2 gene set to risks of these diseases as well (Extended Data Fig. 5c, Tab. S34). 263 

Thus, in addition to macro-scale brain associations, such connectome-transcriptional patterns 264 

for this transdiagnostic factor may imply risks of comorbidities in other specific 265 

neurological/neuropsychiatric diseases, such as ASD, Asperger and dyslexia (Fig. S12-13). 266 

 267 

The eFC-derived transcriptional patterns were functionally enriched into specific biological 268 

pathways, tissue, cell types, diseases and neurodevelopmental periods. 269 

To characterize associations of such transcriptional patterns on multiscale neurobiological 270 

processes, we used gene-expression specific enrichment analysis for decoding functional-271 

specific, cell type-specific, disease-specific and neurodevelopment-specific distributions. In 272 

the PLS1 component, we firstly capitalized on the Metaspace 273 

(https://metascape.org/gp/index.html#/main/step1) platform that embedded with ChatGPT 274 

engine (https://openai.com/blog/chatgpt), to examine functional enrichment of these gene 275 

sets. We found statistically significant functional enrichment into the biological process (GO) 276 

of “regulation of protein kinase activity”, “blood vessel development”, “alcohol metabolic 277 

process” and “sex differentiation” (all p < 5 x 10-6, FDR-corrected) (Fig. 5a, Tab. S35 and Fig. 278 

S14), and illustrated the GO network as well protein-to-protein modules to show their 279 

regulations and interactions (Fig. 5b-c, Tab. S36 and Fig. S15). Full results in the PLS2 can be 280 
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found in the Supplemental Results (Tab. S37, Fig. S16-17). 281 

 282 

Given the significant findings in the GO functional enrichment, we moved forward our analyses 283 

to probe into this enrichment from tissue-specific, cell type-specific, disease-specific and 284 

neurodevelopment-specific schemes. By combining Metascape and SEA (Specific Expression 285 

Analysis, http://genetics.wustl.edu/jdlab/csea-tool-2/), the PLS1 was found to be significantly 286 

enriched across body tissues, such as brain, heart, muscle, bone marrow (p < .05, FDR-287 

corrected, Fig. 6a, Tab. S38). We demonstrated prominent cell type-specific enrichment as 288 

well, such as smooth muscle and Manno midbrain cells (p < .05, FDR-corrected, Fig. 6b, Tab. 289 

S39). These significantly disease-specific enrichment had also been captured, such as “Down 290 

Syndrome” and “Fatigue” (p < .05, FDR-corrected, Fig. 6b, Tab. S40). In conjunction with 291 

BrainSpan atlas (http://www.brainspan.org/), we finally found the specific enrichment of 292 

these gene sets linking to sTDF in the cerebellum, especially in the sensitively developmental 293 

periods from late-mid childhood to young adulthood (Fig. 6c). Despite failure to reach 294 

statistical significance level, this eFC-derived gene set was found to be enriched in cerebellar 295 

and cortical regions than other ones at adulthood (specificity index probability, pSI < .001) (Fig. 296 

6d). Full results for the PLS2 can be found in the Supplemental Results (Tab. S41-43). Together, 297 

these results indicate the overarching neurobiological enrichment for the transdiagnostic 298 

component of anxiety and depression, linking to eFC-derived brain signatures from phenotypic 299 

changes to molecular protein and blood-vessel development as well childhood-to-adulthood 300 

cerebellar neurodevelopment. 301 

 302 

Discussion 303 

The present study investigates the neurobiological underpinnings of the symptom-centered 304 

transdiagnostic factor of anxiety and depression symptoms, by capturing its brain macro-305 

micro-molecular signatures in a non-WEIRD nationwide preclinical cohort. We mainly found 306 

that external life meaning perception and internal emotional exhaustion emerge as the hubs 307 

of bridging transdiagnostic symptoms of anxiety and depression, and support this new scalar 308 

to represent its transdiagnostic factor from symptom-across topological architecture. We 309 

further show that the edge-centric communication patterns could be reproducible and 310 

generalizable neural signatures predicting this transdiagnostic factor. To improve 311 

interpretability of such connectome-based neural phenotype, brain-symptom representation 312 

similarities are probed, and found the similarity of intra-communications of frontoparietal and 313 

attention networks. Moreover, results derived from Twin-ACE model demonstrated the 314 

moderate heritable for these connectome-based eFC signatures. By examining the 315 

transcriptional correlates of such representation similarity, we extended our knowledge of 316 

neurobiological signatures of this transdiagnostic factor from macroscale brain connectome to 317 

genetically micro-molecular architectures, showing specific enrichment into vessel systems, 318 

tissues of brain/heart, Manno midbrain cells and childhood-to-adulthood cerebellar 319 

neurodevelopments. Together, our findings shed lights on the neurobiological underpinnings 320 

of the preclinical transdiagnostic factors of anxiety and depression symptoms by clarifying 321 

these genetically molecular-micro-macro brain signatures. 322 

 323 

Although widely studied, probing into the network-wise architectures of pathopsychological 324 
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connectome of depression and anxiety was still one of the most promising pathway to 325 

understand this transdiagnostic factor4,44. In the present study, we found the integrative high 326 

centrality of external life meaning perception (e.g., “perceiving meaningless life”) and internal 327 

emotional exhaustion (e.g., “feeling exhaustion”) in this symptom-centered network in a 328 

preclinical adult population, which merited to characterize early vulnerable symptoms for “at-329 

risk or preclinical” ones8,45-49. Thus, these findings complement previous studies by revealing 330 

preclinical or “at-risk” trans-symptoms to the anxiety and depression. Importantly, this 331 

network analysis conceptualized on a new scalar called “sTDF”, which may forward over 332 

theoretical framework of the “p factor” of transdiagnostic psychiatry. Though the “p factor” 333 

offered a promising framework to describe common liability or vulnerability across different 334 

psychiatric conditions, such “single” dimension may oversimplify between-symptom 335 

interactions as critiqued recently5,50. In this vein, our findings benefit to partly address this 336 

concern by going beyond simplistic linear common associations from this symptom-centered 337 

network-wise model51.  338 

 339 

Based on the sTDF describing general transdiagnostic symptom-centered factor of anxiety and 340 

depression, we have demonstrated its brain edge-centric connectome-based signatures, with 341 

well reproducibility and generalizability. Rather to regional FC, the edge-centric connectome 342 

reflects whether the communication patterns of pairs of FC were linked, with mathematical 343 

assumptions of such communication for correlations of element-wise co-fluctuations across 344 

time series52,53. Compared to the nodal FC, it has been broadly manifested that the eFC 345 

outperformed in subject-specific identifiability and predictive robustness by depicting 346 

community-wise architecture24,52. That is, our findings are reinforced by existing evidence to 347 

indicate the robustly predictive brain signatures of such symptom-centered phenotype, 348 

possibly gaining promising biomarkers of this transdiagnostic factor. One important point to 349 

promote this conclusion from previous studies was to replicate and generalize this predictive 350 

model originally developed in other independent samples. A robust body of evidence stressed 351 

the “generalizability challenges” in tremendously increasing neuroimaging-based machine-352 

learning models54,55. As shown in our study, the model performance was overestimated by 353 

showing prominently higher predictive accuracy in the internal sample than external samples. 354 

Thus, our current eCPM partly addressed this issue by generalizing it into other independent 355 

samples involving into ethnic biases and COVID-related confounding factors, highly 356 

strengthening the pre-clinical practicability in other broader populations 56,57. Collectively, our 357 

findings derived from this predictive model may imply that the edge-centric connectome could 358 

be reproducible and generalizable neural signatures for this transdiagnostic factor of anxiety 359 

and depression for preclinical populations. 360 

 361 

By probing into the quantitative twin neuroimaging associations and genetically 362 

transcriptional patterns of such neural phenotype, our study has bridged a link of brain 363 

signatures of this transdiagnostic factor with the underlying gene expression mechanisms. 364 

Rather to integrate transdiagnostic symptoms, many studies have demonstrated the genetic 365 

associations that depicted by transcriptional profiles for the overlapping of neural anomalies 366 

across psychiatric disorders, which was conceptualized as “transdiagnostic neural 367 

biomarkers”58-60. Supporting that, Xie et al (2023) illuminated transdiagnostic neural substrates 368 
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underlying the transpsychiatric conditions by establishing the neuropathopsychological (NP) 369 

factor as the endophenotype, showing prominently inheritable characteristics61. Furthermore, 370 

the polygenic “p factor” has been revealed by showing high risks in heritability (i.e., 57%) 371 

across major psychiatric disorders62,63. Thus, our findings were supported by these evidences 372 

to substantiate genetically neurobiological substrates of edge-centric connectome in 373 

predicting transdiagnostic symptom-centered phenotype in the preclinical population64-66, 374 

which may partly indicate the increased genetic/neural risks of “early preclinical symptoms” 375 

to “diagnosed disorder”. In other words, this finding provided secondary evidence to support 376 

the interplay of genetic risks on this preclinical transdiagnostic factor across heterogeneous 377 

psychiatric conditions (beyond a commonly general factor) by shaping cortical activities38,67-69. 378 

One point in this enrichment analysis worthy to be highlighted was to demonstrate the enriched 379 

neurodevelopment periods from late-mid childhood to young adulthood for neural phenotype of 380 

transdiagnostic factor, especially in cortical and cerebellar regions. There was a consistent 381 

conclusion to demonstrate the increasing trends for emotional problems (e.g., depressive 382 

symptoms) from childhood to adulthood, but had not yet reached a conclusive interpretation70-72. 383 

Our findings thus provided indirect evidence to encapsulate such trajectory as results of cortical 384 

and cerebellar underdevelopments. From what has been mentioned, the present study may enrich 385 

our understandings of multiscale neurobiological underpinnings of transdiagnostic symptom-386 

centered factor across anxiety and depression. 387 

 388 

Despite providing multiscale insights, several limitations should be warranted. We recruited a non-389 

WEIRD healthy adult sample to ensure the sociodemographic diversity, but not to consider the 390 

contrasts to ones in clinical conditions. Relating to this concern, we didn’t included measurements 391 

for more internalizing symptoms, thus limiting the “transdiagnostic factor” into anxiety and 392 

depression only. Given the cross-sectional design, the present study gained abundant findings from 393 

correlative evidences. Thus, we recommended high-quality experimental study to provide robustly 394 

causal evidence strengthening the validity of our conclusions. Last aspect of limitations was the 395 

moderate strength of evidence. While the pioneering evidence has established an seemingly far-396 

reaching associations between brain macro-micro-molecular signatures and symptoms of 397 

anxiety/depressions, specific aspects still require further consolidation through more direct 398 

investigations. 399 

 400 

In conclusion, we originally established a new network-wise symptom-centered transdiagnostic 401 

factor of these anxiety and depression (sTDF) in the preclinical populations. Based on this 402 

scalar, we further build upon the machine-learning model to capture its reproducible and 403 

generalizable brain edge-centric signatures involving into attention and frontoparital systems. 404 

By using twin dataset, AHBA and neurophysiological datasets, the eFC-derived connectome-405 

transcriptional landscapes were disentangled, especially in multifarious biologically functional 406 

enrichment associating to vessel systems and childhood-to-adulthood cerebellar 407 

neurodevelopments. Thus, these findings paved the pathways to understand neurobiologically 408 

plausible understructure of preclinical transdiagnostics of anxiety and depression symptoms 409 

by overarching multiscale insights into the genetic macro-micro-molecular framework. 410 

 411 

Methods 412 
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Participants and neuroimaging data acquisition 413 

We included a representative non-WEIRD nationwide sample consisted of 2, 022 healthy adults 414 

(Tab. 1 and Supplemental Methods 1). Given the COVID-19-derived neurobiological changes, 415 

neuroimaging data had been acquired preceding to pandemic, or such data had been collected 416 

for participants who were currently free from COVID-19 infections. As behavioral 417 

measurements, the Zung’s self-report depression scale (SDS) and status-trait anxiety inventory 418 

(STAI) were used to describe symptoms (Supplemental Methods 2). Data collection protocol 419 

and these ensuing analyses had been officially approved by the Institutional Review Board (IRB) 420 

of Southwest University. Data acquisition and preprocessing for neuroimaging of these 421 

participants were all in line with our previously standardized pipelines to this dataset73,74 422 

(Supplemental Methods 3). 423 

 424 

Gaussian graph-theoretical model and transdiagnostic factor 425 

To capture the hubs of transdiagnostic factor of anxiety and depression, we carried on the 426 

EBICglasso Gaussian graph-theoretical model. As guided by didactic framework, the extended 427 

Bayesian information criterion glasso (EBICglasso) algorithm was used for regularization of 428 

this network75 with each item as node and with partial correlations of pairs of them as edge 429 

(Supplemental Methods 4-5). Furthermore, we estimated topological hubs of this connectome 430 

by using 10 topologically nodal and bridging centrality, with high values of centrality for 431 

detecting hubs (Supplemental Methods 6).To integrate these 10 multifarious topological 432 

properties (i.e., centrality), we used the normalized Shannon’s entropy (SE) that described the 433 

extent to which this node (item) appeared relatively higher comprehensive centrality values 434 

than of others across all the topological properties of centrality  (Supplemental Methods 7-435 

8). Finally, we calculated the principal common loading scores among these hubs as 436 

transdiagnostic factor of this connectome of anxiety and depression symptoms (sTDF) 5.  437 

 438 

Edge-centric functional connectome-based predictive model (eCPM) 439 

Edge-centric brain functional connectome (eFC). The Schaefer-100 atlas was used to parcel 440 

cortical areas into 100 regions, and time series of each region were extracted to be z-scored 441 

firstly (i.e., 100 parcels × 240 points). Then, we obtained “edge time series” by estimating the 442 

dot products of these time series, thus gaining 4,950 “edge time series”. The edge-to-edge 443 

connectome was finally built upon for a 12,248,775 x 12,248,775 eFC matrix by correlating 444 

each pair of these 4,950 “edge time series” for each participant to be neural features 445 

(Supplemental Methods 9). 446 

 447 

The eFC conncetome-based predictive model. In line with the original CPM, we estimated the 448 

inter-subject correlations of eFCs to sTDF scores, and retained eFC that reached statistical 449 

significance (p < .05, uncorrected) as thresholding masks, with separation to positive-450 

correlated and negative-correlated mask. In this vein, individual eFC feature was produced by 451 

summing r values of eFC-sTDF correlations in each mask. By using these features, we 452 

established the machine-learning model with support vector algorithm to predict sTDF in these 453 

independent samples by using MATLAB (MathWorks Inc.)(Supplemental Methods 10). 454 

 455 

Inter-subject representation similarity analysis (IS-RSA) 456 
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We deployed the inter-subject representation similarity analysis to capture the multivariate 457 

similar patterns of eFC-sTDF correlations, favoring to interpret these ultra-high-volume data. 458 

Firstly, each “edge-centric” node had been vectored a 1 × 4,949 “node-specific pattern” by 459 

describing all the eFCs relating to this given node. Then, the inter-subject correlations (i.e., r 460 

values) of each “node-specific pattern” were calculated, and these 1-r values were used to 461 

generated neural representation dissimilarity matrix (RDM). Further, we built upon the 462 

behavioral RDM by estimating Euclidean distance of sTDF scores across all the pairs of 463 

participant. We vectored all the neural RDMs and one behavioral RDM by using the upper 464 

triangular matrix, and iterated to correlate each neural RDM to this behavioral RDM by using 465 

Spearman’s correlation. Finally, each correlation reflected nodal eFC-sTDF representation 466 

similarity (RS), with positive (negative) r value for RS (RDS). Statistical significance for these r 467 

values was set to p < .05 with FDR correction. 468 

 469 

Edge-centric connectome-transcriptional signatures 470 

Quantitative twin study analysis. The full model with ACE framework has been established to 471 

clarify heritability of eFC features by decomposing variances of addictive genetic effects (A) 472 

from latent factor model for 127 monozygotic twins and 118 pairs of dizygotic twins (Beijing 473 

Twin Study Dataset, Supplemental Methods 11). Model performances were further compared 474 

to these nested submodels dropping out latent factor (s) (e.g., AE or E), in order to determine 475 

the optimal model. Quantitative heritability was finally estimated from this optimal model 476 

once the statistical significance of Δ X2 was no longer less than 0.50 (Supplemental Methods 477 

11). 478 

 479 

The eFC-derived gene expression patterns to transdiagnostic factor. Preprocessing of AHBA 480 

dataset was all in line with standardized pipeline, and the resultant gene-brain matrix (10,027 481 

genes × 100 parcels) was generated by aligning these gene expression levels into brain spatial 482 

map that defined by Schaefer-100 atlas. In addition, the eFC-sTDF RS vector (1 RS × 100 parcels) 483 

representing edge-centric neural phenotype of this transdiagnostic factor had been prepared. 484 

To capture edge-centric connectome-transcriptional signatures, we carried on the partial least 485 

square (PLS) regression model by fitting gene-brain matrix (10,027 × 100, independent variable) 486 

into this RS vector (1 × 100, dependent variable)(Supplemental Methods 12-13). The 487 

permutation test (at n = 5,000) was used to estimate the statistical significance for each 488 

component of this PLS model. Further, the bootstrapping method with n = 5,000 was deployed 489 

estimating weights and corresponding statistics (Z values) for these genes. To balance both 490 

Type-I and Type-II errors, the statistical threshold was set to Z > 3 (PLS+) or Z < -3 (PLS-). 491 

 492 

Gene sets decoding to brain networks and risks of neurological and psychiatric diseases.  493 

We capitalized on Gene Annotation by Macroscale Brain-imaging Association (GAMBA) 494 

dataset for associating brain functions and risks of neurological/psychiatric diseases. This 495 

GAMBA dataset integrated resources to link brain changes to gene sets that users provided by 496 

online meta-analytic linear regression model, such as macroscale networks, brain cognitive 497 

ontology, cognitive annotations, cortical expansion and metabolism (Supplemental Methods 498 

13). The statistical significance for each model was corrected by Bonferrioni-Holm algorithm 499 

at p < .05. Based on gene sets that we found above, we separately decoded these brain 500 
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correlates by first and second PLS components, with positive weights or reverse ones. To 501 

examine the specificity of these gene-neuroimaging associations, we utilized on the 502 

Permutation tests with multiple null distributions (Supplemental Methods 14) 76. Here, gene 503 

sets had been realigned into orthogonal PLS components to strengthen neuropahtologically 504 

plausible interpretability. 505 

 506 

Enrichment analysis. We deployed the “Metascape” with newest version and “SEA” datasets 507 

to delineate functional processes that were enriched from above gene sets (PLS1 and PLS2). 508 

The gene set was used as input for this platform, and was further annotated by multiple 509 

biological databases (Supplemental Methods 15). To show the gene enrichment specificity, we 510 

estimating the specificity index probability (pSI) to quantify how this given gene set could 511 

enrich higher into specific tissues compared to other ones from different thresholds to include 512 

background enrichment term. The statistical significance of such enrichment for this given gene 513 

set was estimated, with Benjamini-Hochberg FDR corrections. 514 

 515 

 516 
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Captions 706 

Fig. 1 Technical and Research Workflow. The main steps to conduct this study included five 707 

module. a, Module 1, we used each item as node across depression and anxiety scales, and 708 

estimate correlations of all the pairs of them to be edge for establishing connectome. The 709 

transdiagnostic factor of anxiety and depression symptoms (sTDF) scores were estimated by 710 

the common factor loading of symptoms with integrative high centrality in these connectome. 711 

b, Module 2, The edge-centric functional connectivity (eFC) was estimated by correlating each 712 

pair of “edge time series” (240 points) derived from co-fluctuations from Schaefer-100 atlas. 713 

c, Module 3, we established edge-centric predictive connectome model by using eFC to predict 714 

mFC from support vector regression algorithm, and validated this model in several 715 

independent samples. d, Module 4, the inter-subject representation similarity analysis (IS-RSA) 716 

was conducted to decode sTDF-eFC patterns by correlating representation dissimilarity matrix 717 

(RDM) of sTDF scores to eFC. g, Module 5, we used the sTDF-eFC representation similarity as 718 

neural phenotype to align AHBA with 10, 027 gene candidates for capturing neuroimaging-719 

transcriptional associations. The gene-expression macroscale brain decoding and gene 720 

enrichment analyses were conducted to annotate micro-cellular functions. 721 

 722 

Fig 2. Sociodemograprahic Characteristics and Gaussian Graphic Model of Symptom-723 

Centered Network. a, The geospatial and socioeconomic statistics of this nationwide sample 724 

(GGBBP sample recruited from 2019 to 2022). The scale indicated the number of included 725 

subjects after log transformation. b, Mantel’s test plot was illustrated here, and each point into 726 

the lower triangle indicated the mean values of corresponding items. c, We illustrated the 727 

centrality of each symptom (item) from network model by descending order, with the “D” for 728 

indicating “depressive symptom” and with the number of this label for indicating the item in 729 

this scale. d, This showed density with Gaussian kernel function for each symptom by 730 

descending order, with each circuit (gray) for indicating the high integrative centrality. 731 

 732 

Fig 3. The eFC Line-Graph Connectome and Model Performance of eCPM. a, We used the 733 

Gephi (https://gephi.org/) software to visualize edge-centric connectome, with 4,950 nodes 734 

and 24,502,500 eFCs. To ensure readability, this connectome density has been threshold to 735 

0.1, and was adjusted by using Fruchterman-Reingold layout. b, It showed the edge-centric 736 

connectome  and brain systems parceled by Yeo-7 network atlas. c, To show the model 737 

performance, we provided scatter plots for the correlation between true sTDF scores and 738 

predicted ones (z-scored) within the sample. The Taylor diagram was drawn to 739 

comprehensively evaluate model performance. d, We further figured edge-centric 740 

connectome, along with scatter plots and the Taylor diagram to show the external 741 

generalizability in validation sample and four generalizability samples, respectively. 742 

 743 

Fig 4. Transcriptional Profiles of eFC-derived Representation Similarity to Transdiagnostic 744 

Factor. a, We used used partial least squares (PLS) regression model to predict eFC-derived 745 

representation similarity by aligning AHBA normative data into Schaefer-100 space (upper 746 

panel), and showed the weights for first and second components (PLS1 and PLS2, bottom 747 

panel). Further, the scatter plot was provided to show the linear association of PLS scores 748 

(weights) to RS. b, The colored table detailed the gene expression patterns for PLS1 (upper 749 
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panel) and PLS2 (bottom panel), with threshold for the Z value > (<) 3.0. The bar plots in the 750 

right panel indicated proportion of the number of genes reaching this statistical threshold from 751 

all the candidates. By using this statistical boundary, 27 genes (142 genes) survived from 4772 752 

gene (5823 gene) sets in PLS1, and 44 genes (112 genes) survived from 3994 genes (5989 genes) 753 

in PLS2. c, We extracted gene expression level for these selected genes from PLS components, 754 

and illustrated scatter plots for each PLS component that showing the largest correlation 755 

strengths between this given gene and RS coefficient (z-scored). d, The univariate correlations 756 

for expression levels of all the genes and RS coefficient (z-scored) were calculated, and were 757 

presented in this chart with descending order. 758 

 759 

Fig 5. Enrichment of Biological Processes/Pathways and Protein-to-Protein Interaction. a, By 760 

using the Metaspace tool (amplified by ChatGPT), we presented the top 20 biological 761 

processes/pathways that were enriched from the PLS1 gene set at q < 0.01 after Benjamini-762 

Hochberg FDR corrections, with the cumulative hypergeometric distribution for estimating 763 

corresponding p values. b, Circos plot was illustrated by visualizing the term-to-term 764 

connectivity, with edges for showing between-term similarity > 0.3. This plot was generated 765 

by Cytoscape embodied into the Metascape tool. c, We provided protein-to-protein 766 

interaction connectome in this chart, and recolored these proteins that enriched from this 767 

gene list by independent modules detected from the Molecular Complex Detection (MCODE) 768 

algorithm. Details for each MCODE can be found in the Supplementary Materials. 769 

 770 

Fig 6. Specific Enrichment of such sTDF-eFC Gene Set (PLS1). a, We showed the tissue-specific 771 

enrichment of this gene set (PLS1) by using both Metascape tool and Specific Expression 772 

Analysis (SEA) database. * indicated the p < .05 (Benjamin-Hochberg FDR) that found in the 773 

Metascape database in the left panel, while the colors of circles indicated the q values 774 

(Benjamin-Hochberg FDR) in the right panel. The size of these bullseye plots represented the 775 

proportion of the numbers of genes on specific tissues at a given specificity index probability 776 

(pSI), which evaluated the levels of enrichment specificity of given genes compared to other 777 

ones, with permutation tests. b, It had been showed for cell type-specific enrichment (left 778 

panel) and disease-specific enrichment (right panel) of this gene set. c, Bullseye plots, along 779 

with q values, have been illustrated to show the enrichment into the neurodevelopmental 780 

periods at different brain areas. d, Bullseye plots to show the enrichment of SEA brain regions 781 

have been provided though no one reached the statistical significance. 782 
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Fig. 1 Technical and Research Workflow. 784 

Fig 2. Sociodemograprahic Characteristics and Gaussian Graphic Model of Symptom-Centered Network. 785 



                                                                                                  Chen et al. 

 786 

Fig 3. The eFC Line-Graph Connectome and Model Performance of eCPM.787 
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Fig 4. Transcriptional Profiles of eFC-derived Representation Similarity to Transdiagnostic Factor. 788 
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 789 

Fig 5. Enrichment of Biological Processes/Pathways and Protein-to-Protein Interaction.790 
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Fig 6. Specific Enrichment of such sTDF-eFC Gene Set (PLS1) 791 
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 792 

Extended Data Fig. 1 Model Performance for the Trained eCPM on Single-Disorder Symptoms. By testing this trained eCPM for the single-disorder symptoms 793 

(raw total scores), we found the decreased predictability of this model for these single symptoms, irrespective of training from positive (positive eFC-pattern 794 

model), negative (negative eFC-pattern model) or the combined eFCs (full model).795 
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 796 

Extended Data Fig 2. Contributive eFC Features of trained eCPM. a, It showed the “edge time 797 

series” for each edge-centric “node” by estimating co-fluctuations. The blocks in the left side 798 

of matrix indicated corresponding brain system that parceled by Yeo-7 atlas. b-c, We have 799 

drawn matrix to show “contributive edges” in the eCPM, which were determined by the inter-800 

subject positive (b) and negative (c) correlations between eFCs and sTDF (p < .05, uncorrected). 801 

d, By estimating averaged correlation within each brain system, we showed the mean (95% 802 

confidence interval) correlation coefficient for each one, with descending order. The point size 803 

in these plots indicated the proportion of the number of included “contributive edges” on the 804 

possible maximum number within each brain system. e-f, We illustrated normalized entropy 805 

from “contributive edges” with positive correlations to sTDF (e) and negative correlations to 806 

sTDF (f) into Schaefer-100 atlas, and showed these results by using Yeo 7 brain system, 807 

respectively. 808 

 809 
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Extended Data Fig 3. Contributive Feature with High Representation Similarity (RS). a, The eFC-specific neural patterns for each “edge-wise” node have been 810 

illustrated by this 4,950 x 4,949 neural representation dissimilarity matrix (RDM). b, We drew the behavioral RDM by showing the Euclidean distance between 811 

each pair of sTDF scores. c, We rearranged RS r values into each parcel from the Schaefer-100 atlas., with the left (right) panel for positively (negatively) 812 
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similarity between behavioral and neural RDM. d, We further plot the density and distributions of these RS by realigning into intra-communications in the 813 

Yeo-7 brain systems that captured by clustering algorithm (Faskowitz et al., 2020). e, The inter-connections between these brain systems have been shown 814 

with q < .05 after Bonferroni-Holm FDR correction. f, Scatter plots for the highest positive (top) and negative (bottom) RS have been provided. 815 
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 838 
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Extended Data Fig 4. Transcriptional Annotation of these Gene Setsby Macroscale Brain-imaging Association (GAMBA) Analysis. a, The gene expression 839 

distributions for gene sets have been illustrated from PLS1 and PLS2, with separations to positive (PLS1+, PLS2+) and negative weights (PLS1-, PLS2-). The 840 

visualization has been implemented by D-K atlas. b, By using the GAMBA decoding, The linear regression model was used to fit the expression levels to the 841 

network property of resting-state networks (RSNs) by Yeo-7 atlas, and the standardized beta coefficient was presented by bar plots. Dots with light orange 842 

(PLS+) and light (PLS-) blue indicated the p value for this beta coefficient reached statistical significance level (p < .05 at Bonferronni-Holm FDR correction) for 843 

PLS+ and PLS-, respectively. c, We decoded brain cognitive ontology by these gene sets (PLS1+, PLS1-, PLS2+, PLS2-), and plot the brain spatial distributions 844 

(though no one reached statistical significance), with details for each ontology at the left-bottom panel. d, We decoded the cognitive correlates of PLS 845 

components by using online meta-analysis at NeuroSynth, respectively, with large font size for high correlation strengths. e, It showed the distribution of 846 

cortical expansion into the brain model, with scatter plots for these PLS components. No significant correlations were found, but it appeared decreased trends 847 

for the PLS+ and such cortical evolution. f, Rather the separations to positive and negative weights, we had drawn the plots to show the associates of whole-848 

brain topological properties to the entire PLS component 1 and 2. Nodal strength indices: NOS = Number Of Streamlines, FA = Fractional Anisotropy, SD = 849 

Streamline Density, FC = Functional Connectome, SC = Structural Connectome. Dots with light orange and blue represented ones to reach statistical significance 850 

(p < .05 at Bonferronni-Holm FDR correction) for PLS1 and PLS2, respectively. g, We showed the associates of such gene sets to the cortical metabolism. Label 851 

of this dot was in line with previous one. GI = Glycolytic Index, OGI = Oxygen-Glucose Index, CMRO2/GMRGlu = Cerebral Metabolic Rate of Oxygen/Glucose, 852 

CBF, Cerebral Blood Flow. 853 
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Extended Data Fig 5. Risks of Neurological and Psychiatric Diseases of These Gene Sets. a, Spatial distributions of gene expression for PLS1 (top one) and 866 

PLS2 (bottom one) sets have been illustrated. Top 20% regions that showed the highest gene expression were labeled. Full name of these abbreviations can 867 

be found in the D-K atlas. In the bottom panel, all the neurological psychiatric disorders that these gene sets were involved by examining in the BrainMap 868 

database have been detailed. b-c, The general linear regression models were conducted to predict the risks of these diseases from PLS1 (b) and PLS2 (c) gene 869 

list, and were visualized by beta coefficients in these bar plots. No associates of diseases reached statistical significance (p < .05 at Bonferrioni-Holm correction). 870 

To improve gene-expression-correlated specificity, four permutation methods to estimate the statistical significance of these regression models were furthered 871 

conducted, respectively. 872 
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